SPX Product Family
Smart Industrial Pressure Transmitters

Intrinsically safe and Explosion-proof pressure transmitters with integrated amplifier for use in hazardous environments

Operating Manual
DYNISCO SPX QUICK START CARD

This Quick Start Setup guide can be used by experienced instrumentation technicians to configure the Transmitter using the Zero and Span actuators or via the optional HART Communications. For more detailed information please consult the complete manual before operating. The Quick Start procedure with HART is designed for users already familiar with the use of the HART Communicator and loop powered instrumentation.

QUICK START USING PUSH BUTTONS

1. Insure the process connection is clear of any debris and is machined to the proper dimensions. Install unit into the process connection. (Do NOT torque transmitter into the hole at this time!) Allow time for the transmitter temperature to equalize to the process temperature. This will help eliminate thread galling and ease removal later. There should be NO pressure applied at this time.

2. Connect power to the transmitter. For conduit output configurations, Red wire is Sig+/Exc +, Black wire is Sig-/Exc-, Green wire is Ground. For a 6 pin connector version, Pin A is Sig+/Exc+ and pin B is Sig-/Exc-. Insure proper loop supply voltage is applied to transmitter.

3. After temperatures have equalized, tighten transmitter.

4. Perform Zero Function
 - Do not remove seal screws when the circuit is live in a hazardous area
 - Remove zero pushbutton seal screw
 - Using a 2mm or smaller Allen key, depress the pushbutton for a ½ second
 - Release pushbutton for a ½ second
 - Depress the pushbutton again for a ½ second and release

5. Verify loop output is zero (4 mA).

6. Replace the Seal Screw.

ATTENTION
 - Seal screws must remain in place to retain Explosion Proof certification
QUICK START UTILIZING HART COMMUNICATOR

1. Follow Steps 1 through 3 from Quick Start Using Push Buttons.

2. Connect Communicator to the loop. If unsure on how to do this, refer to “Connecting the HART Handheld Communicator” (Figure 6-1).

3. Power on HART Communicator. See HART Command tree on the following page for reference.

4. From the Main Menu:
 a. Enter Tag (Quick Key 1, 3, 1)
 b. Set Pressure Units (Quick Key 1, 3, 2), if required
 c. Set URV (Quick Key 1, 3, 3, 2) if output turndown (rescaling), is required
 d. Perform Zero Trim (Quick Key 1, 2, 5, 1, 3, 1)

5. Verify loop output is zero (4mA).

6. Remove HART Communicator from loop.
NOTE: Above is the Menu Tree for the latest Device Descriptor. For units with software revision < 100 refer to Appendix 2 for appropriate Menu Tree.
Table of Contents

1. GENERAL ...6
2. NOTES ON SAFETY ..11
3. TECHNICAL DATA ..16
4. TRANSPORT/DELIVERY ...20
5. INSTALLATION ...21
6. COMMISSIONING ...23
7. MAINTENANCE ...35
8. TROUBLESHOOTING ...36
9. APPROVALS/CERTIFICATES37
10. APPENDIX 1 - DEFAULT VALUES41
11. APPENDIX 2 – Menu Tree (Software Revision < 100)52
12. DRAWINGS ...53
13. DYNISCO CONTACT INFORMATION56
1 GENERAL

1.1 IMPORTANT INFORMATION

This manual applies to the SPX industrial pressure product family only (SPX228/SPX538). The SPX melt pressure family is covered in a separate manual. This manual must be kept near the equipment in a readily and immediately accessible location at all times. The content of this manual must be read, understood and followed in its entirety. This applies in particular to the notes on safety. Following the safety instructions will help to prevent accidents, defects and malfunctions.

DYNISCO will not be held liable for any injury, loss or damage resulting from failure to follow the instructions in this manual.

If the product malfunctions, in spite of having followed the operating instructions, please contact customer service from our website:

www.dynisco.com/contact

1.2 COPYRIGHT

Copyright law requires that this manual be used for intended purposes only.

It is strictly forbidden to allow reproduction of any kind “in whole or in part” to persons outside of Dynisco, without approval from Dynisco.

HART is a registered trademark of HART Communication Foundation.
1.3 EXPLANATION OF ICONS

The manual uses icons to indicate information pertaining to safety:

ATTENTION

Risk of destruction or damage to equipment, machines or installations

General danger to life or limb

Specific danger to life or limb

Related to ATEX/Intrinsic Safety requirements

Related to Factory Mutual Approval requirements

Related to Safety Integrity and Performance Level Applications

The safety instructions are provided again in the individual sections of the manual.
1.4 ABBREVIATIONS

The following abbreviations are used:

BSL Best Straight Line
DD Device Descriptor
EEPROM Electrically Erasable Programmable Read Only Memory
FS Full Scale
HART Highway Addressable Remote Transducer
LRV Lower Range Value
PT Pressure Transmitter
PV Primary Variable (Pressure)
SV Secondary Variable (Electronics Temperature)
URV Upper Range Value
Watchdog An internal monitor for the electronics

1.5 NAMING CONVENTION

SPX SPX Industrial Smart Pressure Transmitters (228 & 538 Series)
1.6 TRANSMITTER PRINCIPLES OF OPERATION

The mechanical system consists of a gaged diaphragm. One side of the diaphragm is in direct contact with the fluid media (gas or liquid) while a strain gage element in the configuration of a Wheatstone bridge is bonded to the backside.

The deflection of the diaphragm causes a change in the resistance of the strain gage and hence a change in the balance of the bridge. The amount of imbalance is directly proportional to the applied pressure. This completes the translation of pressure applied to the diaphragm into a usable electrical signal.

The low level output signal from the bridge is amplified via an instrumentation amp circuit. The amplified signal then goes to the input of the analog-to-digital (A/D) converter.

Once the microprocessor has the converted voltage input from the A/D converter, the digital signal is sent to a digital-to-analog (D/A) converter which modulates the current of the unit’s power supply between 4 and 20 mA for an output current proportional to the applied pressure.

![Figure 1-1 Block Diagram of Operation](image-url)
1.7 CORRECT USE

When using an SPX as a safety component in accordance with the EC Machine Directive, Annex IIc, the equipment manufacturer must take any necessary precautions to ensure that malfunction of the PT cannot cause damage or injury.

For explosive gas the installation of the device must be in accordance with European installation guidelines EN 60079-14 for explosive gas atmospheres. Over voltage protection shall be implemented as mentioned in EN 60079-14.

When planning machinery and using one of the units from the SPX Family, follow the safety and accident prevention regulations that apply to your application, such as:

- EN 60204, Electrical equipment in machines
- EN 12100, Machine safety, general design guidelines
- DIN 57 100 Part 410, Protection against electric shock
- EN 60079-0
- EN 60079-11 Intrinsically Safe Apparatus
- EN 60079-25 Special Requirements for Group II Category 1G

1.8 USER’S OBLIGATIONS

The operator or owner of the larger overall system, e.g. a machine, is responsible for following the safety and accident prevention regulations that apply to the specific application.
2 NOTES ON SAFETY

The operator or owner of the larger overall system is responsible for following the safety and accident prevention regulations that apply to the specific application.

DYNISCO will not be held liable for any injury, loss or damage resulting from failure to follow the instructions in this manual.

Warnings

The SPX is an ESD sensitive component. Electrostatic discharge may damage the SPX. Take ESD precautions.

Electrical shock can result in death or serious injury. Avoid contact with the leads and terminals. High voltage that may be present on leads can cause electrical shock.

Mounting and electrical connection of the PT must be done by specialists with EMC training, following all applicable regulations, and in **pressure-less, voltage-free, intrinsically safe** condition with the **machine switched off**. The **machine must be secured against being switched back on**!

EMC/CE Compliant Connection

Earth the machine section with the process connections for the SPX in accordance with regulations. The SPX must be connected to earth via the process connection.

Connect the shield of the connecting cable on both sides, making sure it conducts with full and continuous contact.

When introducing the connecting cable into an EMC compliant switch cabinet, for example, connect the shield correctly (cable gland, conducting, full contact, and continuous) to the conductive housing or route it via a built-in cable connector that is also connected to the conductive housing. Connect unused cable cores or free cable ends correctly to the cable shield on both sides.
Temperature

The SPX can be used in media temperatures up to +85°C (based on configuration). If the pressure transmitter is used in other applications, the safety and accident prevention regulations specific to that application must be followed. Ambient temperature for the electronics housing is +85°C maximum in areas that are not classified as hazardous.

Higher temperatures can result in damage and malfunction. Do not install the pressure transmitter in places where these temperatures are exceeded.

Use in Hazardous Classified Areas

Several configurations of the SPX are designed and approved for use in hazardous classified areas. Units intended for installation in these areas must bear the applicable approval agency label.

The SPX is specially designed for measuring pressure in explosive gas atmospheres for Zone 0 under safety class II 1 G Ex ia IIC T6/T4 (T6, Ta = -20 to + 50°C; T4, Ta = -20 to + 85°C). The SPX is also approved for hazardous gas area Zone 1 under safety class II 2 G Ex ia IIC T6/T4 (T6, Ta = -20 to + 60°C; T4, Ta = -20 to + 85°C).

The maximum T_{med} (medium temperature) for temperature class T6 is +60°C and for T4 is +85°C. The medium temperature for the SPX is defined as the temperature of the pressure transmission fluid below the measuring diaphragm (See Figure 1-1). This temperature can be verified by measuring the surface temperature at the base of the electronics housing.

For category 1 (Zone 0) installations, care must be taken to avoid the danger of ignition due to electrostatic discharges (ESD). The chance for static build up on the cable surface during normal conditions of use, maintenance and cleaning must be eliminated. Install the cable in an appropriate conduit or use some other cable reliable installation technique to avoid static electricity at the cable surface.

The free length of the cable must be below 5 cm. If metallic conduits are used they need to be grounded. If nonmetallic conduits are used they need to be antistatic (< 1G Ohm/cm²).

The housing shall be connected reliably to the local equipotential bonding system.

Those variants that include the material aluminum shall be installed in such a way that sparking as a result of impact or friction between aluminum and steel is excluded. Impact or friction between aluminum and stainless steel is allowed if the existence of rust particles can be excluded.

For application as Category-1-Equipment the connecting cable shall be equipped with a suitable conductive coating ($R_{surface} < 10^9$ Ω) to avoid possible electrostatic charge.

After installation before operating the device the user must check that the complete installation and wiring is intrinsically safe. Care must be taken that the power source is a certified apparatus.
Deviation of the supply voltage from the value given in the technical specifications, or reverse polarity, can damage the pressure transmitter and cause malfunctions that can pose a risk of explosion. Operate only with an intrinsically safe, EMC compliant power supply with the following specifications when employing the pressure 4-20 mA output:

- Supply Voltage max. \(U_0 = 30 \text{ V} \)
- DC Current Output max. \(I_0 = 100 \text{ mA} \)
- Power max. \(P_0 = 0.750 \text{ W} \)

The specified values of \(L_0 \) and \(C_0 \) for the power supply need to be greater than \(C_i + C_{\text{cable}} \) and \(L_i + L_{\text{cable}} \).

- Internal Inductance \(L_i < 40 \mu\text{H} \)
- Internal Capacitance \(C_i < 4.5 \text{ nF} \)

If the transmitter is installed in hazardous areas, only passive devices like switches or resistors may be connected between the RCAL+ and RCAL- signals. Connection of any active electronic circuits or voltage or current sources is not allowed.

Certain configurations of the SPX are also designed for use in hazardous areas as Explosion-proof and Dust Ignition-proof by Factory Mutual for Class I, Division 1, Groups A, B, C & D, and Class II, III, Division 1, Groups E, F & G.

For SPX units that are explosion-proof approved for Class I, Division 1, Groups A, B, C & D the power supply rating is 13-30 Vdc.

Additional Comments:
1) Do not remove the transmitter push-button seal screws in explosive environments when the circuit is live.
2) Transmitter push-button seal screws must be fully engaged to meet Explosion-proof requirements.
3) Before connecting a HART handheld communicator in an explosive atmosphere, make sure the instruments in the loop are installed in accordance with intrinsically safe or non-incendive field wiring practices.
2.1 SAFETY integrity and performance level applications

User’s obligations

The operator or owner of the larger overall system, e.g. a machine, is responsible for following the safety and accident prevention regulations that apply to the specific application.

Intended Use
See Certificate in section 9.4

Safety Function
See Certificate in section 9.4

For units with the optional monitoring channel (Guardian Series, Option Code = GCxxx):

Under normal operating conditions the relay contacts are closed. In the event that a failure is detected the relay contacts open. Detectable failures include:

1) Loss of Power
2) Open Gage
3) Input over a predefined (customer selectable at time of order) threshold

The Guardian Series transducer has been designed to provide a protective measure. This has been done by the avoidance and control of systematic and random failures. This product will:

Measure the pressure and provide a safety relay output. Since this is being used to perform a protective measure, this sensor should only be used for monitoring the pressure and not controlling the process. Best practices declare that safety and control must be independent from each other.

The Guardian Series transducer detects many hardware failures including an open or short in the measuring gage and if there is an overpressure condition. If any of these failures occur, the output relay will open. It is the user’s responsibility to connect this relay to the system in such a way that when this relay opens, it brings the system to a safe state.
This fault state is not latched. It is up to the user to latch this error if desired.

Recommended practices

This Guardian Series transducer must be installed in such a way that the opening of the output relay will bring the system to a safe state. In this safe state the instrument that is monitoring the pressure should be left operational.

This error indication is not latched. If it is necessary to latch the error until it is manually reset, this is the user’s responsibility.

At startup and on a periodic basis the safety system should be tested to ensure proper operation. This will require applying a pressure to the Guardian Series transducer that is over the safe level but less than the maximum pressure. Verify that the protective measure is initiated to take the machine to a safe operating condition.

Use of qualified personnel

The product may only be assembled, installed, configured, commissioned, operated and maintained by persons with proven skills. Persons with proven skills are suitably experienced to operate devices, systems, plant and machinery in accordance with the general standards and guidelines for safety technology.

It is the user’s responsibility only to employ personnel who:

- Are familiar with the basic regulations concerning health and safety and accident prevention
- Have read and understood the safety guidelines given in this description
- Have a good knowledge of the generic and specialist standards applicable to the specific application

Connecting Safety Relay

Relay specs: Maximum switching voltage: 200Vdc; Maximum switching current: 0.5A

Device pinout
3 TECHNICAL DATA

3.1 MODEL CODE BREAKDOWN

The exact meanings of the letter/digit combinations are given in the corresponding sections of this Chapter.

3.2 ORDERING EXAMPLE

Note(s):
1) Review section 3.4 Performance Characteristics for accuracy definition and details.
2) Review “Notes on Safety” (Chapter 2) before installation in Hazardous locations.
3) Certain models are not available in some configurations.
4) For other process connections please consult factory.
5) Other approved ranges may exist, please consult factory.
6) Transmitters are available with certain approved option codes. Please consult factory for list of approved options.

3.3 SAFETY SPECIFICATIONS

Please see “Notes on Safety” (Chapter 2.)
3.4 PERFORMANCE CHARACTERISTICS

3.4.1 ACCURACY
Accuracy is defined as combined error expressed as a percentage of full scale (% F.S.) output based on the following standard configurations/conditions:

1) Best Straight Line % F.S. as per ISA-37.3
2) +20°C ambient electronics

*Consult factory for non-standard configurations.

<table>
<thead>
<tr>
<th>Model</th>
<th>Range</th>
<th>Accuracy (% of FS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2280</td>
<td>15 – 72,500 PSI</td>
<td>+/- 0.50</td>
</tr>
<tr>
<td>2281</td>
<td>15 – 72,500 PSI</td>
<td>+/- 0.25</td>
</tr>
<tr>
<td>2282</td>
<td>5 – 10,000 PSI</td>
<td>+/- 0.15</td>
</tr>
</tbody>
</table>

3.4.2 RESOLUTION

±0.035% full scale @ 50% F.S. (average resolution)

3.4.3 REPEATABILITY

± 0.10% of full scale

3.4.4 OVERLOAD PRESSURE (MAX PRESSURE WITHOUT INVALIDATING SPECIFIED ACCURACY)

<table>
<thead>
<tr>
<th>Model</th>
<th>Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-25 psi, w/ overload stop</td>
<td>10 x range</td>
</tr>
<tr>
<td>50-750 psi, w/ overload stop</td>
<td>5 x range</td>
</tr>
<tr>
<td>250 – 30,000 psi</td>
<td>1.5 x range</td>
</tr>
<tr>
<td>Greater than 30,000 psi</td>
<td>1.2 x range</td>
</tr>
</tbody>
</table>

3.4.5 BURST PRESSURE

<table>
<thead>
<tr>
<th>Model</th>
<th>Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>250 psi</td>
<td>10 x range</td>
</tr>
<tr>
<td>500-3,000 psi</td>
<td>5 x range</td>
</tr>
<tr>
<td>5,000 – 10,000 psi</td>
<td>3 x range</td>
</tr>
<tr>
<td>15,000 – 30,000 psi</td>
<td>2.5 x range</td>
</tr>
<tr>
<td>40,000 – 60,000 psi</td>
<td>1.5 x range</td>
</tr>
</tbody>
</table>

3.4.6 FREQUENCY RESONSE

20 Hz [-3db]
3.4.7 RESPONSE TIME

50 mS

3.5 ELECTRICAL DATA

Configuration 4-arm Wheatstone bridge strain gauge with internal amplifier
Output Signal 2-wire 4 - 20 mA
Saturation Levels 3.8 mA and 20.5 mA
Fail Safe Levels 3.6 mA for Low Level
 > 21mA for High Level
Current Consumption < 25 mA
Supply Voltage 13 - 30 VDC for PTB ATEX IS and FM XP approved models
 13 - 32 VDC for non-approved models

Note: Transmitter incorporates overvoltage protection and reverse polarity protection and will not operate if inputs are reversed.

Sense Resistor Load Line

250 ohms minimum for HART communication

3.6 TEMPERATURE INFLUENCE

ELECTRONICS HOUSING

Operating Temperature Range -29°C to +85°C
Compensated Temperature Range -17°C to +65°C
Zero Shift due to temperature change on electronics housing

0.01% FS/°F max. (0.02% FS/°C max.)

Span shift due to temperature change on electronics housing

0.01% FS/°F max. (0.02% FS/°C max.)

PROCESS CONNECTION

Zero shift due to temperature change on the diaphragm

0.01% FS/°F max. (0.02% FS/°C max.)

Span shift due to temperature change on diaphragm

0.02% FS/°F max. (0.04% FS/°C max.)

3.7 EMC REQUIREMENTS

The SPX Conforms to CE in accordance with EMC directive. See Declaration of Conformity for more details.

3.8 MATERIALS

Standard Diaphragm 15-5PH Mat. No. 1.4545
Standard Wetted Parts 17-4PH Mat No. 517400

Please note other diaphragm and stem materials may be substituted.

3.9 ENVIRONMENTAL PROTECTION TO ANSI/IEC-60529 & ANSI/NEMA-250

SPX with sealed conduit to IP67, NEMA 4X

3.10 WEIGHT

The weight varies depending on product configuration. Average weight range is 1 to 3 pounds.

3.11 DIMENSIONS

The dimensions vary based on product configurations. Contact Dynisco if product dimensions are required.
4 TRANSPORT/DELIVERY

ATTENTION The SPX is an ESD sensitive component. Electrostatic discharge may damage the SPX. Take ESD precautions.

4.1 TRANSPORT/PACKING/TRANSPORT DAMAGE

- Do not let the SPX be damaged by other items during transit
- Use only the original packaging
- Report transport damage to DYNISCO immediately in writing

4.2 STORAGE

- Store the SPX in original packaging only
- Protect against dust and moisture

4.3 SCOPE OF DELIVERY

- SPX with diaphragm protection cap
- Calibration sheet
- Operating manual with declaration of conformity
5 INSTALLATION

NOTES: Follow all Notes on Safety in Section 2 during installation.

5.1 GENERAL MOUNTING INFORMATION

Do not remove the protective cap on the SPX until ready to install.

Before mounting the SPX, check the process connection carefully. The SPX must only be mounted in process connections that satisfy the requirements below. A process connection that does not satisfy these requirements can damage the transmitter.

Insure the process connection is clear of any debris and is machined to the proper dimensions. In applications involving high temperature operation and/or repeated thermal cycling a good high quality anti-seize compound should be applied to the threaded surfaces.

Install unit into the process connection (Do NOT torque transmitter into the hole at this time!). Allow time for the transmitter snout temperature to equalize to the process temperature. This will help eliminate thread galling and ease removal later. There should be NO pressure applied at this time.

Always use a torque wrench applied to the designated wrench flats while screwing the transmitter in and out. Do not apply the tool to the housing or housing/sensor connection.

After temperatures have equalized tighten transmitter into process connection.

When removing the SPX, carefully clean the diaphragm of the transmitter with a soft cloth while the medium is still malleable.

Always remove the SPX prior to cleaning the machine with abrasives or steel wire brushes. Also, do not clean the SPX with hard objects, such as a screwdriver, a wire brush, etc. This will possibly damage the transmitter.

Burn Hazard! The SPX can be very hot when removed. WEAR PROTECTIVE GLOVES!

Careful attention should be paid to correctly machine the mounting port. Failure to use the recommended mounting port may result in erroneous pressure measurement, difficult transducer removal, premature sensor failure, process fluid leaks, and personnel hazard.

5.2 ELECTRICAL CONNECTION

Connect power to the transmitter. For conduit output configuration, Red wire is Sig+/Exc +, Black wire is Sig-/Exc-, Green wire is Ground. For a 6 pin connector version, Pin A is Sig+/Exc+ and pin B is Sig-/Exc-. Insure proper loop supply voltage is applied to transmitter.
The SPX is an ESD sensitive component. Electrostatic discharge may damage the PT. Take ESD precautions.

Mounting and electrical connection of the SPX must be done by specialists with EMC training, following all applicable regulations, and in pressure less, voltage-free, intrinsically safe condition with the machine switched off.

The machine must be secured against being switched back on!

5.3 CONNECTION ASSIGNMENTS

The device must be connected to a certified power supply. Each unit will include a primary 4-20mA output. The unit may also have one of the options listed in the table below. See section 2.1 for wiring details of units with GCxxx option code.

<table>
<thead>
<tr>
<th>Connection Type</th>
<th>Terminal Description</th>
<th>Conduit-Lead Wire Color</th>
<th>6-Pin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary 4-20mA</td>
<td>PWR+/SIG+</td>
<td>Red</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>PWR-/SIG-</td>
<td>Black</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>CASE</td>
<td>Green</td>
<td></td>
</tr>
<tr>
<td>Optional RCAL</td>
<td>RCAL+</td>
<td>Orange</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td>RCAL-</td>
<td>Blue</td>
<td>E</td>
</tr>
</tbody>
</table>

If the transmitter is installed in hazardous areas, only passive devices like switches or resistors may be connected between the RCAL+ and RCAL- signals. Connection of any active electronic circuits or voltage or current source is not allowed.
6 COMMISSIONING

There are two ways of commissioning the SPX transmitters. This can be done by utilizing the ZERO and SPAN actuators or by HART Communications via a communicator connected to the pressure loop.

If the SPX is equipped with the optional HART Communications, it is not necessary to access the zero/span actuators on the sensor.

If the transmitter is not equipped with HART then the zero/span actuators must be utilized. However, Sections 6.3 through 6.8 and 6.11 may be skipped.

6.1 WHY A TRANSMITTER MUST BE REZEROED

The transmitter output must be nulled at zero pressure after installation when the machine has stabilized at operating temperature. This is easy to understand why when considering the mechanical properties of the sensor.

Depending on the orientation of the sensor, the weight of the diaphragm will have an effect on the sensing diaphragm. The weight of the diaphragm will either increase or decrease deflection of the diaphragm, creating a shift in the strain gage output that can appear as a positive or negative pressure.

There are some other effects that may affect the zero as well, such as torque, side loading, etc. For more information contact Dynisco.
All of these effects can be compensated for by setting the transmitter zero after the machine has stabilized at operating temperature.

6.2 UTILIZING THE ZERO AND SPAN ACTUATORS

When the transmitter output needs to be corrected due to mounting location and temperature shift the zero actuator can be used (if a HART Communicator is not available.) Please wait until the process has been brought to operating temperature before zeroing. The zero procedure is only recommended after the process temperature has stabilized and the SPX electronics housing has been permanently installed.

When the actuator is depressed in a certain sequence, the output will be corrected to reflect 4 mA. This is done by the transmitter electronics automatically by adjusting the LRV and URV settings simultaneously to the offset required to obtain 4 mA. Normally a Zero calibration is all that is required after installation since the Transmitter span has been calibrated at the factory. In the event the Full Scale output is not correct when checked against a calibrated pressure source or dead weight tester, the transmitter span can be adjusted via the Span actuator. This is performed by applying a known calibrated full scale pressure to the transmitter and depressing the Span actuator in a certain sequence. When complete, the transmitter electronics will have adjusted the URV to correct to output to equal 20 mA.

ATTENTION
The span actuator should never be used to set the URV without zeroing the PT with the zero actuator first.

If for some reason the calibration is incorrect and the user wishes to revert back to the Factory Calibration, a procedure can be performed to revert the calibration back to factory state. Refer to “Resetting to Factory Default Settings” in this Chapter.

6.2.1 ZERO AND SPAN PROCEDURE

1. Connect Power Supply to SPX signal leads with 250 Ohm load and milliamp meter in series with loop.
2. If commissioning on the bench with a dead weight tester or calibrated pressure source, ensure pressure connection is free of leaks.
3. Apply power to the SPX transmitter and observe loop current with zero pressure applied. It should be 4 mA. If other than 4 mA proceed to step 4.

ATTENTION
i. Do not remove seal screw when the circuit is live in a hazardous area.
ii. Remove zero pushbutton seal screw.
iii. Using a 2mm or smaller Allen key, depress the pushbutton for a ½ second.
iv. Release pushbutton for a ½ second.
v. Depress the pushbutton again for a ½ second and release.
The available pressure is now adopted as the new lower range value.

Steps past this point are not part of a normal bench setup and should only be performed by qualified individuals, as the SPX is highly stable and has been factory calibrated with highly accurate pressure generators. This function should only be performed on such equipment.

5. Apply Full Scale pressure and verify output is 20 mA. If output is other than 20 mA, perform Local Span adjustment:
 i. Do not remove seal screw when the circuit is live in a hazardous area.
 ii. Remove span pushbutton seal screw.
 iii. Using a 2mm or smaller Allen key, depress the pushbutton for a ½ second.
 iv. Release pushbutton for a ½ second.
 v. Depress the pushbutton again for a ½ second and release.

The available pressure is now adopted as the new upper range value.

6.3 UTILIZING THE HART COMMUNICATIONS

The zero procedure is only recommended after the process temperature has stabilized and the SPX electronics housing has been permanently installed. When the zero trim function is selected (HART Quick key 1,2,5,1,3,1) the output will be corrected to reflect zero pressure. This is done by the transmitter electronics automatically by adjusting digital PV to zero and analog output will be 4 mA. Normally a Zero Trim is all that is required after installation since the Transmitter span has been calibrated at the factory.

In the event the Full Scale output is not correct when checked against a calibrated pressure source or dead weight tester, the Transmitter span can be adjusted by performing the Sensor Trim function. This is performed by first applying Zero Pressure and selecting Lower Sensor Trim (HART Quick Key 1, 2, 5, 1, 3, 2) and following the prompts on the HART Communicator. When complete, apply a known calibrated full scale pressure to the Transmitter and selecting Upper Sensor Trim (HART Quick Key 1, 2, 5, 1, 3, 3) and follow the prompts on the HART Communicator. When complete, the transmitter electronics will have adjusted the digital PV to correct to full scale output.

Never perform upper sensor trim without performing lower sensor trim first.
6.3.2 CONNECTING THE HART HANDHELD COMMUNICATOR

In hazardous areas, refer to the handheld communicator instruction manual for instructions for HART Communicator to function properly.

ATTENTION
A minimum of 250 Ohms resistance must be present in the loop.

The HART Communicator does not measure loop current directly.

The HART Communicator can interface with the SPX anywhere along the 4 - 20 mA cable as shown in the following figure.

![HART Communicator Interface Diagram]

Figure 6-1 HART Communicator Interface

6.3.3 PROCEDURE

1. Connect Power Supply and HART Communicator per the above diagram.
2. If commissioning on the bench with a dead weight tester or calibrated pressure source, insure pressure connection is free of leaks.
3. Apply power to the SPX transmitter and turn on the HART Communicator by pressing the ON/OFF key. The LCD display should show [SPX-T or SPX depending on model] in the upper left corner. If this is not present, consult the Troubleshooting section of this manual.

4. Set PV Units (Fast Key 1,3,2) to appropriate pressure unit. (e.g. psi, Bar, kgf/cm², MPa)

5. Set Tag (Fast Key 1,3,1).

6. If transmitter output needs to be re-ranged, set the appropriate LRV (Fast Key 4,1) and URV (Fast Key 4,2)
 - Note: URV cannot be turned down below the PV Minimum span (Fast Key 1,4,1,5)

7. Set Lower Trim (Fast Key 1,2,5,1,3,1)

8. Verify SPX transmitter output. Zero pressure output should read 4 mA.

 Steps past this point are not part of a normal bench setup and should only be performed by qualified individuals, as the SPX is highly stable and has been factory calibrated with highly accurate pressure generators. This function should only be performed on such equipment.

9. Next, using calibrated pressure source, apply pressure equal to value set in URV in step 6. Output should equal 20 mA. If output does not equal 20 mA proceed to step 10.

10. To calibrate full scale output, first apply pressure equal to full scale pressure of unit. Next perform Upper Sensor Trim (Fast Key 1,2,5,1,3,2). Output should now equal full scale pressure.

11. If Transmitter Output Damping is required, set PV Damping (Fast Key 1,3,5) to the appropriate value.

12. Press the left arrow key until the HART Communicator is off-line then turn the power off.

The SPX pressure transmitter is now ready to be installed in the process.

6.4 SPX ANALOG OUTPUT

The SPX has a 4-20 mA output proportional to pressure for normal operating conditions. However, unlike a traditional sensor, the SPX performs self-diagnostic routines continually during operation. If a special condition is detected, the transmitter drives its analog output outside the normal saturation values to indicate that investigation is necessary (this condition is called fail-safe mode alarm). The conditions detected by the self-diagnostic routines (and the corresponding effect on the analog output) are listed later in this section.

When a special condition is detected, the SPX goes into fail-safe mode and the transmitter output goes high, by default. However, using a HART communicator, the transmitter can also be configured to drive its output low or to freeze the output where it was just before the fail-safe was detected. The actual analog output levels are indicated below.

A low alarm (3.6 mA) is possible but not recommended because HART communications are not guaranteed until the cause of the alarm is removed.

Using the HART communicator, the specific condition that triggered the fail-safe mode alarm can be read for diagnostic purposes (see Status in the HART menu tree).
In a fail-safe condition the PV is not affected and can still be read using the handheld HART communicator. For process related fail-safe conditions, the transmitter will remain in the alarm state until the source of error disappears. If certain electronics errors are detected, the fail-safe condition will latch until a reset is performed by either cycling the power or through a software command.

NAMUR Compliant Saturation and Alarm Values

<table>
<thead>
<tr>
<th>4 - 20 mA Saturation</th>
<th>4 - 20 mA Alarm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>3.8 mA</td>
<td>20.5 mA</td>
</tr>
<tr>
<td>3.6 mA</td>
<td>>21 mA</td>
</tr>
</tbody>
</table>

You can alter the actual transmitter mA output values by performing an analog output trim using the HART Communicator.

When a transmitter is in an alarm condition, the analog output displayed by the handheld indicates the alarm value of the analog output – NOT the value the transmitter would have, if the sensor had not detected the failure.

Special Conditions and the Corresponding Analog Output

<table>
<thead>
<tr>
<th>Condition</th>
<th>Alarm Value (fail safe)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEPROM failure detected</td>
<td>Set to configured fail safe mode</td>
</tr>
<tr>
<td>Cold start</td>
<td>Set to fail safe mode low</td>
</tr>
<tr>
<td>Pressure above upper limit</td>
<td>Unchanged</td>
</tr>
<tr>
<td>Pressure below lower limit</td>
<td>Unchanged</td>
</tr>
<tr>
<td>Electronics temp above upper limit</td>
<td>Unchanged</td>
</tr>
<tr>
<td>Electronics temp above lower limit</td>
<td>Unchanged</td>
</tr>
<tr>
<td>Strain gage open detected</td>
<td>Set to configured fail safe mode</td>
</tr>
<tr>
<td>Analog output saturated</td>
<td>Unchanged</td>
</tr>
<tr>
<td>Watchdog error detected</td>
<td>Unchanged</td>
</tr>
<tr>
<td>Zero/Span Actuator stuck</td>
<td>Set to configured fail safe mode</td>
</tr>
<tr>
<td>Low voltage detected</td>
<td>Unchanged</td>
</tr>
<tr>
<td>Outside URV or LRV</td>
<td>Unchanged</td>
</tr>
<tr>
<td>Rcal simulation on</td>
<td>Unchanged</td>
</tr>
</tbody>
</table>

6.5 ALARM & SATURATION VALUES BURST MODE

No special requirements are defined for the burst mode.

6.6 ALARM & SATURATION VALUES IN MULTIDROP MODE

If the device is in multidrop mode, the NAMUR levels are no longer achievable. Instead the fail safe condition is indicated by the field device status and the additional diagnostics.
6.7 SPX TRANSMITTER FUNCTIONS VIA HART

Zero Trim (1,2,5,1,3,1)
Digital Correction to zero which affects the digital output. This differs from Lower Sensor Trim in that zero trim is ONLY performed at zero pressure.

Lower Sensor Trim (1,2,5,1,3,2)
Digital Correction to zero which affects the digital output. This differs from Zero Trim in that Lower Sensor Trim can be performed at pressures above zero.
Note: This must be performed before Upper Sensor Trim. Only perform this function with a known calibrated pressure source.

Upper Sensor Trim (1,2,5,1,3,3)
Digital correction to Full Scale which affects digital output.
Note: Lower Sensor Trim must be performed before Upper Sensor Trim. Only perform this function with a known calibrated pressure source.

Digital to Analog trim (1,2,5,1,2)
This is used to match the digital representation of the analog output with its actual analog loop current.
Note: This should only be performed with a known Calibrated Current (mA) meter.

Reranging
The SPX allows for the 4 mA and 20 mA points (LRV and URV respectively) to be adjusted so that output resolution can be improved. A Re-range or “Turndown” ratio of 6:1 is possible. Accuracy specifications remain dependent upon the Full Sensor Range without any turndown applied. Three methods of Reranging the SPX Transmitter are outlined below.
Note: If pressure applied to the transmitter is not in the range of the 6:1 turndown ratio, the transmitter will reject the Span attempt. This will be indicated by the output not adjusting to 20 mA after a few attempts using the Span Actuator.

Reranging via Zero/Span Actuators
When HART Communication is not used, LRV and URV values are entered by applying zero pressure to the SPX-T and “Rezeroing” by:

i. Do not remove seal screw when the circuit is live in a hazardous area.
ii. Remove zero pushbutton seal screw.
iii. Using a 2mm or smaller Allen key, depress the pushbutton for a ½ second.
iv. Release pushbutton for a ½ second.
v. Depress the pushbutton again for a ½ second and release.

The LRV and URV have now been adjusted to zero the device without affecting the span.

After Rezeroing, it is possible to set the span by adjusting the URV with the span actuator. The span actuator should never be used to adjust the URV without using the zero actuator to set the LRV first.
URV or Full Scale Turndown is performed by applying any pressure, within the 6:1 ratio of the transmitter that you want to be the 20 mA point. When the pressure is held steady:

i. Do not remove seal screw when the circuit is live in a hazardous area.
ii. Remove span pushbutton seal screw.
iii. Using a 2mm or smaller Allen key, depress the pushbutton for a ½ second.
iv. Release pushbutton for a ½ second.
v. Depress the pushbutton again for a ½ second and release.

The SPX has now adjusted the URV 20 mA point to match the pressure applied.

6.8 RERANGING VIA HART

Rerange LRV (4)
This is the pressure at which the transmitter will output 4 mA as entered directly by the user. Changing the LRV affects the transmitter span so the is range is limited by the minimum span value found in Fast Key (1,4,1,5)

Rerange URV (5)
This is the pressure at which the transmitter will output 20 mA as entered directly by the user. This range is limited by the minimum span value found in Fast Key (1,4,1,5)

Rerange LRV By Applying Pressure (1,2,5,1,1,1,1)
This is done by applying a known pressure and initiating the procedure so that the transmitter adopts the pressure as the 4 mA point.

Note: This should only be performed with a Calibrated Pressure Source.

Rerange URV By Applying Pressure (1,2,5,1,1,1,2)
This is done by applying a known pressure and initiating the procedure so that the transmitter adopts the pressure as the 20 mA point.
Note: This should only be performed with a Calibrated Pressure Source.

Recall Factory Trim (1,2,5,3)
This is used to restore the Zero, Lower, and Upper Trim to the Values as set from the Factory.

R-Cal Set % (1,2,5,1,4,1)
This is used on versions with a Rcal. By activating R-Cal, the output will be set to the percentage of span set by this function. Default is 80%. Setting Rcal to 0%, disables the Rcal function.

Damping (1,3,5)
The damping time constant affects the speed with which the primary output signal reacts to changes in pressure as shown in the figure on the following page. Damping is off by default but values between 0 and 30 seconds can be set using the handheld communicator. The damping value must be entered in integers. If non-integers are entered, the system rounds to the next integer.
Local Actuator Disable (1,4,3,6)
Local zero and span actuators can be disabled using the HART handheld communicator function “Local Push-buttons.” When turned off, the software Lock Out prevents changes to transmitter range points via the local zero and span actuators. With local Push-buttons disabled, changes to configuration are still possible via HART.

Status (1,2,1,2)
Reads Device Status from SPX.

PV Unit (1,3,2)
The pressure unit defines the unit of measure that the pressure-specific parameters are transmitted in. The SPX can be configured in the engineering units of psi, Bar, MPa, and kgf/cm² or as a percentage of Full Scale (FS). After selecting a new pressure unit, all entries for pressure are recalculated to the new unit, using the following conversion rules:

1 psi = 0.068947 Bar = 0.0068947 MPa = 0.070309 kgf/cm²

Tag (1,3,1)
An inventory “Tag” identification number may be stored in transmitter memory (8 characters maximum). Software tag is a single question mark by default.

Descriptor (1,3,4,2)
A 16 character text can be entered for further description of transmitter e.g. location, function, position, etc.

Message (1,3,4,3)
A 20 character message can be set and displayed on the HART Communicator.

SV Electronics Temperature (1,1,7)
Temperature measured on the Electronics Assembly is used for reference and factory diagnostics only.

Poll Address (1,4,3,3,3)
Use in Multidrop mode allows more than one transmitter (up to 15) on a single loop. If this value is other than zero, the transmitter is in Multidrop mode. An example of Multidrop mode would be a
group of HART devices wired in parallel on a single powered loop and each device being assigned a unique Poll address (1-15). The HART communicator would prompt for the individual address of the transmitter to communicate with and would only poll that specific device. All others would remain unchanged. Note: Analog output is set to 4mA when in multi-drop mode.

Burst Mode (1,4,2,3,1)
When the SPX-T is used in Burst Mode, the transmitter outputs one-way digital communications from the transmitter to the Host. Communication rate is faster since the transmitter does not have to be polled to send data. Information transmitted in Burst Mode includes Pressure Variable, Analog Output value, Pressure in % of range. Access to other information can still be obtained through normal HART Comms.

6.9 RESETTING TO FACTORY DEFAULT SETTINGS

The factory settings for the sensor (including zero and span) can be restored if they are changed inadvertently using the Zero/Span Actuators or the HART communicator. The list of parameters restored is shown below.

Make sure Control System is in Manual mode. Temporary loss of Loop Output during Electronics Re-boot may occur.

To reset the sensor using the actuators, use the following procedure:

1. Do not remove seal screw when the circuit is live in a hazardous area.
2. Remove zero and span pushbutton seal screws.
3. Using a 2mm or smaller Allen key, depress the pushbuttons for a ½ second.
4. Release pushbuttons for a ½ second.
5. Depress the pushbuttons again for a ½ second and release.

At this point, the LRV and URV will be set to factory defaults.
6.10 DEFINITION OF “RESTORE FACTORY DEFAULTS”

1. Restore LRV and URV to their values at shipment.
2. Restore the Pressure Unit (psi, Bar, etc.) to its value at shipment.
3. Set the Analog Output Alarm Level to its value at shipment.
4. Remove all Pressure Damping.
5. Clear all Sensor and Analog Output Trim values.
7. Restore the Address to Zero.
8. Restore the Rcal option to its value at shipment (enable or disable the Rcal option).
9. Set actuators to the settings they were when shipped from DYNISCO.

6.11 HART COMMUNICATOR FAST KEY SEQUENCES

Below defines the HART Communicator Fast Key sequences. Fast Keys are a means of supplying a shortcut to navigate through the menu tree.
HART Communicator Fast Key sequences

<table>
<thead>
<tr>
<th>Function</th>
<th>Fast Key Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read PV Pressure</td>
<td>2</td>
</tr>
<tr>
<td>Read % of Full Scale</td>
<td>1,1,2</td>
</tr>
<tr>
<td>Read Analog Output (PV)</td>
<td>1,1,3</td>
</tr>
<tr>
<td>Read SV Electronics Temperature</td>
<td>1,1,7</td>
</tr>
<tr>
<td>Read Peak Pressure Value</td>
<td>1,2,1,2</td>
</tr>
<tr>
<td>Read Peak Electronic Temp Value (SV)</td>
<td>1,2,1,3</td>
</tr>
<tr>
<td>Read Sensor Diagnostic Status</td>
<td>1,2,1,1</td>
</tr>
<tr>
<td>Read PV Minimum Span</td>
<td>1,4,1,5</td>
</tr>
<tr>
<td>Perform Sensor Self-Test</td>
<td>1,2,2</td>
</tr>
<tr>
<td>Perform Sensor Master Reset</td>
<td>1,2,3</td>
</tr>
<tr>
<td>Perform Loop Test</td>
<td>1,2,4</td>
</tr>
<tr>
<td>Perform D/A Trim (PV)</td>
<td>1,2,5,1,2</td>
</tr>
<tr>
<td>Perform Zero Trim</td>
<td>1,2,1,3,1</td>
</tr>
<tr>
<td>Perform Lower Sensor Trim</td>
<td>1,2,5,1,3,2</td>
</tr>
<tr>
<td>Perform Upper Sensor Trim</td>
<td>1,2,5,1,3,3</td>
</tr>
<tr>
<td>Recall Factory Trim</td>
<td>1,2,5,3</td>
</tr>
<tr>
<td>Set Rcal %</td>
<td>1,2,5,1,4,1</td>
</tr>
<tr>
<td>Set Tag</td>
<td>1,3,1</td>
</tr>
<tr>
<td>Set PV Unit</td>
<td>1,3,2</td>
</tr>
<tr>
<td>Set Lower Range Value (LRV) (PV)</td>
<td>1,3,3,1</td>
</tr>
<tr>
<td>Set Upper Range Value (URV) (PV)</td>
<td>1,3,3,2</td>
</tr>
<tr>
<td>Display Lower Set Limit (LSL) (PV)</td>
<td>1,3,3,5</td>
</tr>
<tr>
<td>Display Upper Set Limit (USL) (PV)</td>
<td>1,3,3,6</td>
</tr>
<tr>
<td>Set Date</td>
<td>1,3,4,1</td>
</tr>
<tr>
<td>Set Descriptor</td>
<td>1,3,4,2</td>
</tr>
<tr>
<td>Set Message</td>
<td>1,3,4,3</td>
</tr>
<tr>
<td>Set PV Damping</td>
<td>1,3,5</td>
</tr>
<tr>
<td>Set SV Temperature Unit</td>
<td>1,4,1,7</td>
</tr>
<tr>
<td>Set PV Analog Output Alarm Type</td>
<td>1,4,2,2,3</td>
</tr>
<tr>
<td>Set Poll Address</td>
<td>1,4,2,3,1</td>
</tr>
<tr>
<td>Set # of Request Preambles</td>
<td>1,4,2,3,2</td>
</tr>
<tr>
<td>Set Burst Mode</td>
<td>1,4,2,3,3</td>
</tr>
<tr>
<td>Set Burst Option</td>
<td>1,4,2,3,4</td>
</tr>
<tr>
<td>Read Analog Output (TV)</td>
<td>1,1,6</td>
</tr>
<tr>
<td>Read Peak Temp Value (TV)</td>
<td>1,2,3,4</td>
</tr>
<tr>
<td>Perform D/A Trim (TV)</td>
<td>1,2,5,2,2</td>
</tr>
<tr>
<td>Set Lower Range Value (LRV) (TV)</td>
<td>1,3,3,3</td>
</tr>
<tr>
<td>Set Upper Range Value (URV) (TV)</td>
<td>1,3,3,4</td>
</tr>
<tr>
<td>Temperature Override</td>
<td>1,2,5,2,1,1</td>
</tr>
<tr>
<td>Temperature Override Value</td>
<td>1,2,5,2,1,2</td>
</tr>
</tbody>
</table>
7 MAINTENANCE

7.1 MAINTENANCE

Mounting and electrical connection of the SPX must be done by specialists with EMC training, following all applicable regulations, and in pressureless, voltage-free, intrinsically safe condition with the machine switched off.

The machine must be secured against being switched back on!

Burn Hazard! The SPX can be very hot when removed. WEAR PROTECTIVE GLOVES!

Installation and Removal Instructions

- DO NOT REMOVE PROTECTIVE CAP UNTIL READY TO INSTALL.
- PRIOR TO INITIAL INSTALLATION, VERIFY CORRECT MACHINING OF MOUNTING HOLE.
- WHEN REINSTALLING, MAKE SURE THE PROCESS CONNECTION IS CLEAR OF DEBRIS.
- ALWAYS REMOVE THE SPX BEFORE CLEANING THE MACHINE WITH ABRASIVES OR STEEL WIRE BRUSHES, ETC.
- DO NOT CLEAN THE “SCREWED-IN” SECTION OF THE SPX WITH HARD OBJECTS – THIS WILL DAMAGE THE SPX.
- ALWAYS USE A TORQUE WRENCH APPLIED TO THE DESIGNATED WRENCH FLATS. DO NOT APPLY THE TOOL TO THE HOUSING OR HOUSING/SENSOR CONNECTION.
- ELECTROSTATIC DISCHARGE MAY DAMAGE THE SPX – TAKE ESD PRECAUTIONS.

7.2 REPAIR/DISPOSAL

For SPX repair and disposal please contact customer service from our website:

www.dynisco.com/contact

7.3 WARRANTY

The SPX Series Dynisco Pressure transmitters will provide excellent service and superior performance if proper care is taken during handling, installation, and use. This DYNISCO product is warranted under terms and conditions set forth in the DYNISCO web pages. Go to www.dynisco.com and click on the "warranty" link under the “Post-Sales Support” tab at the top of the web page for complete details.

8 TROUBLESHOOTING

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Corrective Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milliamp Reading is Zero</td>
<td>1) Check if Power Polarity is Reversed</td>
</tr>
<tr>
<td></td>
<td>2) Verify Voltage Across Transmitter Pins</td>
</tr>
<tr>
<td>Issue Description</td>
<td>Steps to Solve</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Large Zero Shift when Screwing In</td>
<td>1) Check Hole with Gage Plug and Rework Hole as Required
2) Check Mounting Torque</td>
</tr>
<tr>
<td>Primary Milliamp Reading is Low or High</td>
<td>1) Check Pressure Variable Reading for Saturation
2) Check if Output in Alarm Condition
3) Verify 4 and 20 mA Range Points or Simply Reset
4) Perform 4 - 20 mA Output Trim with HART Communicator</td>
</tr>
<tr>
<td>No Response to Changes in Applied Pressure</td>
<td>1) Check Test Equipment
2) Check Port/Pipe for Blockage or Solidified Plastic
3) Check if Output in Alarm Condition
4) Check if in multi-drop mode</td>
</tr>
<tr>
<td>Pressure Variable Reading is Low or High</td>
<td>1) Check Test Equipment
2) Check Port/Pipe for Blockage or Solidified Plastic
3) Perform Full Sensor Trim</td>
</tr>
<tr>
<td>Pressure Variable Reading is Erratic</td>
<td>1) Check Port/Pipe for Blockage or Solidified Plastic
2) Check Damping
3) Check for EMI</td>
</tr>
<tr>
<td>Transmitter Not Communicating with HART Communicator</td>
<td>1) Check Power Supply Voltage at Transmitter
2) Check Load Resistance (250 Ohm minimum)
3) Check Communicator Connection Across Power Supply
4) Check if Unit is Addressed Properly
5) Confirm HART communicator is connected to primary (Pressure) output 4-20mA</td>
</tr>
<tr>
<td>HART Communicator missing SPX Features Described in Manual</td>
<td>From the Communicator’s Main Menu, Access the On-Line Menu. The Name SPX Should be Displayed on the Top Line of the LCD. If the Name is not Present, Contact Dynisco to Arrange for DD Upgrade</td>
</tr>
<tr>
<td>Primary output =3.6mA or > 21mA</td>
<td>4) Unit is in fail safe, consult fail safe section</td>
</tr>
</tbody>
</table>
9 APPROVALS/CERTIFICATES

9.1 CE DECLARATION OF CONFORMITY ... 388
9.2 EC-TYPE EXAMINATION CERTIFICATE ... 400
9.3 EX FM CERTIFICATE OF COMPLIANCE ... 445
9.4 SAFETY INTEGRITY AND PERFORMANCE LEVEL APPLICATION 409

Note additional approvals available; please consult factory.
9.1 CE DECLARATION OF CONFORMITY

We,

Dynisco LLC
38 Forge Parkway
Franklin, MA 02038
USA

declare under our sole responsibility that the products,

Model SPX2 GEN2 Pressure Transmitters
Model SPX3 Pressure Transmitters (SPX-T 3xxx)
Model SPX4 GEN2 Pressure Transmitters
Model SPX5 GEN2 Pressure Transmitters (SPX-L 5xxx)

to which this declaration relates, are in conformity with the standards or other normative documents following the provisions of the respective Council Directives listed below:

- CISPR 11:2003
- IEC 61000-4-2:2001
- IEC 61000-4-3:2001
- IEC 61000-4-4:2004
- IEC 61000-4-5:2001
- IEC 61000-4-6:2003
- IEC 61000-4-8:1994

PED Directive 97/23/EC – Pressure Equipment

Sound Engineering Practice (SEP) applies to all models except the SPX228 and the SPX538 with a maximum pressure of 200 bar (3000 psi) or greater.

Conformity Assessment Module “A” applies to models SPX228 and the SPX538 with a maximum pressure of 200 bar (3000 psi) or greater.

ATEX Directive 94/9/EC – Potentially Explosive Atmospheres

- EN 60079-0:2009
- EN 60079-11:2007
- EN 60079-26:2007
- EN 1127-1:2007

Equipment Group II, Category 1 G Ex ia IIC T6/T4 or Category 2 G Ex ia IIC T4/T6

EC-type-examination Certificate Number.: PTB 09 ATEX 2038 X

ATEX Notified Body for EC Type Examination Certificate:

Physikalisch-Technische Bundesanstalt (PTB)
Bundesallee 100
D-38116 Braunschweig, Germany

Notified Body Number: 0102

P/N 973002
ECO# 44422
Rev. D
ATEX Notified Body involved in the Production Control Stage:
Sira Test and Certification Ltd (SIRA)
Rake Lane, Eccleston
Chester, Cheshire
CH4 9JN, England
Notified Body Number: 0518

The authorized representative located within the Community is:
Dynisco Europe GmbH
Pfaffenstr. 21
74078 Heilbronn Germany

Other information:
1. Device testing per normative standards following the EMC Directive (2004/108/EC) was conducted by: Chomerics Test Services, Woburn, Massachusetts, USA / 7-8 April 2009 / American Association for Laboratory Accreditation (A2LA) accredited facility, Certificate Number 1980-01.

2. Safety Description per normative standards following the ATEX Directive (94/9/EC) was prepared by: MESCO Engineering GmbH, Wiesentalstrasse 74 D-79539 Lorrach, Germany

Date of issue: 20 November 2014
Place of issue: Franklin, MA USA

[Signature]
John Crazasty
Director of Engineering
9.2 EC-TYPE EXAMINATION CERTIFICATE

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

(1) EC-TYPE-EXAMINATION CERTIFICATE
(Translation)

(2) Equipment and Protective Systems Intended for Use in Potentially Explosive Atmospheres - Directive 94/9/EC

(3) EC-type-examination Certificate Number:
PTB 09 ATEX 2038 X

(4) Equipment: Pressure transmitter, type series SPX-T and SPXGEN2

(5) Manufacturer: Dynisco Instruments

(6) Address: 38 Forge Parkway, Franklin, MA 02038, USA

(7) This equipment and any acceptable variation thereto are specified in the schedule to this certificate and the documents therein referred to.

(8) The Physikalisch-Technische Bundesanstalt, notified body No. 0102 in accordance with Article 9 of the Council Directive 94/9/EC of 23 March 1994, certifies that this equipment has been found to comply with the Essential Health and Safety Requirements relating to the design and construction of equipment and protective systems intended for use in potentially explosive atmospheres, given in Annex II to the Directive.

The examination and test results are recorded in the confidential assessment and test report PTB Ex 09-29142.

(9) Compliance with the Essential Health and Safety Requirements has been assured by compliance with:

(10) If the sign “X” is placed after the certificate number, it indicates that the equipment is subject to special conditions for safe use specified in the schedule to this certificate.

(11) This EC-type-examination Certificate relates only to the design, examination and tests of the specified equipment in accordance to the Directive 94/9/EC. Further requirements of the Directive apply to the manufacturing process and supply of this equipment. These are not covered by this certificate.

(12) The marking of the equipment shall include the following:

II 1 G Ex ia IIC T6 / T4 or II 2 G Ex ia IIC T4 / T6

Zertifizierungssektor Explosionsschutz
By order:

Dr.-Ing. U. Gerlach
Oberregierungsrat

Braunschweig, October 20, 2009

sheet 1/4
Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

(13) SCHEDULE

(14) EC-TYPE-EXAMINATION CERTIFICATE PTB 09 ATEX 2038 X

(15) Description of equipment

The pressure transmitters of type series SPX-T and SPXGEN2 are used to convert a mechanical quantity (pressure) into a proportional electrical quantity in the field of process control. Both type series are supplied by an intrinsically safe 4…20 mA current loop with superimposed digital data communication in accordance with the HART-protocol. The conditioned measured value is available as an analog 4…20 mA current signal. Type series SPX-T is optionally provided with an additional intrinsically safe 4…20 mA current loop which is used to display temperature, however, without digital data communication, as well as an optionally available secondary resistive temperature detector (RTD). HALL-switches (SPX-T) or pushbuttons (SPXGEN2) enable adjustments of Zero and Span. These are installed inside the enclosure. The transmitters may be operated as category-1- or category-2-equipment according to the specifications listed below.

Category-1-equipment:
For application as category-1-equipment the following marking and ambient temperatures apply:
Marking: Ex 1 G Ex ia IIC T6 / T4

For relationship between maximum permissible ambient temperature, maximum permissible medium temperature and temperature class reference is made to the following table:

<table>
<thead>
<tr>
<th>temperature class</th>
<th>T6</th>
<th>T4</th>
</tr>
</thead>
<tbody>
<tr>
<td>max. permissible ambient temperature</td>
<td>50 °C</td>
<td>85 °C</td>
</tr>
<tr>
<td>max. permissible medium temperature</td>
<td>60 °C</td>
<td>85 °C</td>
</tr>
</tbody>
</table>

The minimum permissible ambient and medium temperature is: -20 °C.

Category-2-equipment:
For application as category-2-equipment the following marking and ambient temperatures apply:
Marking: Ex 2 G Ex ia IIC T6 / T4

For relationship between maximum permissible ambient temperature, maximum permissible medium temperature and temperature class reference is made to the following table:

<table>
<thead>
<tr>
<th>temperature class</th>
<th>T6</th>
<th>T4</th>
</tr>
</thead>
<tbody>
<tr>
<td>max. permissible ambient temperature</td>
<td>60 °C</td>
<td>85 °C</td>
</tr>
<tr>
<td>max. permissible medium temperature</td>
<td>60 °C</td>
<td>85 °C</td>
</tr>
</tbody>
</table>

The minimum permissible ambient and medium temperature is: -20 °C.
Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

SCHEDULE TO EC-TYPE-EXAMINATION CERTIFICATE PTB 09 ATEX 2038 X

Electrical data:

SPX-T and SPXGEN2
Supply and evaluation circuit
(plugin connector or open ended cable,
terminals: PWR+/SIG+, PWR-/SIG-, RCAL+, RCAL-)

- type of protection Intrinsic Safety Ex ia IIC
- only for connection to a certified intrinsically safe circuit
- Maximum values:
 \[U_i = 30 \text{ V} \]
 \[I_i = 100 \text{ mA} \]
 \[P_i = 750 \text{ mW} \]
 \[C_i \leq 4.5 \text{ nF} \]
 \[L_i \leq 40 \text{ \(\mu \)H} \]
- only passive components without internal power source and without external circuits shall be connected to the terminals RCAL+/RCAL-

Sensor circuit

SPX-T
Supply and evaluation circuit
(plugin connector or open ended cable,
terminals: PWR+/SIG+, PWR-/SIG-, RCAL+, RCAL-, RTD-, RTD+,
2\text{nd} PWR+/SIG+, 2\text{nd} PWR-/SIG-)

- type of protection Intrinsic Safety Ex ia IIC
- only for connection to a certified intrinsically safe circuit
- Maximum values per circuit:
 \[U_i = 30 \text{ V} \]
 \[I_i = 100 \text{ mA} \]
 \[P_i = 750 \text{ mW} \]
 \[C_i \leq 4.5 \text{ nF} \]
 \[L_i \leq 40 \text{ \(\mu \)H} \]
- only passive components without internal power source and without external circuits shall be connected to the terminals RCAL+/RCAL-

Sensor circuit

(16) **Assessment and test report** PTB Ex 09-29142

EC-type-examination Certificates without signature and official stamp shall not be valid. The certificates may be circulated only without alteration. Extracts or alterations are subject to approval by the Physikalisch-Technische Bundesanstalt. In case of dispute, the German text shall prevail.

Physikalisch-Technische Bundesanstalt • Bundesallee 100 • 38116 Braunschweig • GERMANY

P/N: 974153 | Rev: 072016 | ECO: 46503

www.dynisco.com
Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

SCHEDULE TO EC-TYPE-EXAMINATION CERTIFICATE PTB 09 ATEX 2038 X

(17) Special conditions for safe use
 1. The housing of the pressure transmitters, type series SPX-T and SPXGEN2 shall be connected reliably to the local equipotential bonding system.
 2. Those variants of the pressure transmitters, type series SPX-T and SPXGEN2 which include the material aluminium, shall be installed in such a way that sparking as a result of impact or friction between aluminium and steel is excluded. Impact or friction between aluminium and stainless steel is allowed if the existence of rust particles can be excluded.
 3. For application as category-1-equipment the connecting cable shall be equipped with a suitable conductive coating ($R_{\text{surface}} < 10^6 \Omega$) to avoid possible electrostatic charge.

(18) Essential health and safety requirements
 met by compliance with the standards mentioned above

Zertifizierungssektor, Erzeugennachweis
By order:

Dr.-Ing. U. Gerlich
Oberregierungsrat

Braunschweig, October 20, 2009

EC-type-examination Certificates without signature and official stamp shall not be valid. The certificates may be circulated only without alteration. Extracts or alterations are subject to approval by the Physikalisch-Technische Bundesanstalt.
In case of dispute, the German text shall prevail.

Physikalisch-Technische Bundesanstalt • Bundesallee 100 • 38116 Braunschweig • GERMANY

Dynisco
P/N 974153 | Rev: 072016 | ECO: 46503
www.dynisco.com
-43-
9.3 EX FM CERTIFICATE OF COMPLIANCE

CERTIFICATE OF COMPLIANCE

HAZARDOUS (CLASSIFIED) LOCATION ELECTRICAL EQUIPMENT

This certificate is issued for the following equipment:

228aEbcCdefghi. SPX Smart Pressure Transmitter
XP/I/I/1/ABCD/IT5 Ta=85C, T6 Ta=60C
DIP/I/I/I/1/EFG/IT5 Ta=85C, T6 Ta=60C; Type 4X*, IP67*

a = Accuracy 0, 1, or 2.
d = Cable length code (one digit alpha-numeric)
e = Wiring Connections 4 or 6.
f = Pressure units B, C, K, M, or P.
g = Pressure range code 10 through 32.
h = Hart communications A, B or C.
i = Option code (four digits alpha-numeric)

*If Pressure Range code is less than 14 and Pressure Reference Code (b = B, K, C, M or G) then Type 4X and IP67 ratings are not included.

228aEbcCdefgCizzj. SPX Smart Pressure Transmitter
XP/I/I/1/ABCD/IT5 Ta=85C, T6 Ta=60C
DIP/I/I/I/1/EFG/IT5 Ta=85C, T6 Ta=60C; Type 4X, IP67

a = Mounting configuration 0, 1, or 2.
b = Process diaphragm material (one digit alpha-numeric).
c = Process connection code (two digits alpha-numeric).
d = Pressure units B, C, K, M, or P.
e = Pressure range 08 through 23.
f = Rigid snout length code (two digits alpha-numeric).
g = Flex snout code (two digits alpha-numeric).
h = Hart communications A, B or C.
i = Cable length code (one digit alpha-numeric).
j = Option code (four digits alpha-numeric).
From lab to production, providing a window into the process
From lab to production, providing a window into the process
From lab to production, providing a window into the process
This certifies that the equipment described has been found to comply with the following Approval Standards and other documents:

- Class 3600 1998
- Class 3015 2006
- Class 3810 2005
- IEC 60529 2004
- ANSI/NEMA 250 1991

Original Project ID: 3018521 Approval Granted: July 22, 2004

Subsequent Revision Reports / Date Approval Amended

<table>
<thead>
<tr>
<th>Report Number</th>
<th>Date</th>
<th>Report Number</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>081218</td>
<td>January 20, 2009</td>
<td>3039264</td>
<td>September 29, 2010</td>
</tr>
</tbody>
</table>

FM Approvals LLC

J.E. Marquedant
Group Manager, Electrical

Date 29 September 2010
9.4 Safety Integrity and Performance Level Applications
Safety function: Measuring of pressure and output of an analogue signal 4 – 20mA proportional to the volume pressure applied to the sensor. The total valid range of the output signal shall be configured to a minimum of 3.8 mA and a maximum of 20.5 mA (Factory Default). The safety related function of the transmitter is the safe measurement of the pressure with a tolerance of ±0.5% of the span (worst-case). Monitoring for an excessive pressure condition has to be performed in the downstream safety device, the transmitter is connected to. This safety device has to treat output currents lower than 3.8 mA or greater than 21 mA as failure condition. It must be configured to recognize the configured pressure range for the high alarms or low alarms as a safety trip and secondary alarms as defined by NAMUR are diagnostic failure.

The transmitters of the Guardian Series contain a separate HW monitoring channel for excessive pressure. In case the configured over-pressure value is exceeded the contact of the output relay opens. It has to be considered, that it is not allowed to use the analogue output of a combi-transmitter for the control of a pressure and the monitoring output of the same transmitter for monitoring of an over-pressure condition at the same time. In this case 2 different devices have to be used (see EN 1143-1, cl. 5.2.5).

<table>
<thead>
<tr>
<th>Characteristics as per IEC 61508</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIL</td>
<td>SIL 2 (HFT = 0 architecture, I01)</td>
</tr>
<tr>
<td>Device Type</td>
<td>B</td>
</tr>
<tr>
<td>Mode of operation</td>
<td>Low demand mode</td>
</tr>
<tr>
<td>SPX Series 2</td>
<td>78%</td>
</tr>
<tr>
<td>SPX Series 3</td>
<td>79%</td>
</tr>
<tr>
<td>SPX Series 4</td>
<td>78%</td>
</tr>
<tr>
<td>SPX Series 5</td>
<td>78%</td>
</tr>
<tr>
<td>SPX Series Industrial</td>
<td>78%</td>
</tr>
<tr>
<td>Guardian</td>
<td>71%</td>
</tr>
<tr>
<td>Recommended time interval for proof-testing T1</td>
<td>1 year</td>
</tr>
<tr>
<td>PFDT(<sub>T1</sub>) for T1 = 1 year</td>
<td>SPX Series 2</td>
</tr>
<tr>
<td></td>
<td>SPX Series 3</td>
</tr>
<tr>
<td></td>
<td>SPX Series 4</td>
</tr>
<tr>
<td></td>
<td>SPX Series 5</td>
</tr>
<tr>
<td></td>
<td>SPX Series Industrial</td>
</tr>
<tr>
<td></td>
<td>Guardian</td>
</tr>
<tr>
<td>PTH</td>
<td>SPX Series 2</td>
</tr>
<tr>
<td></td>
<td>SPX Series 3</td>
</tr>
<tr>
<td></td>
<td>SPX Series 4</td>
</tr>
<tr>
<td></td>
<td>SPX Series 5</td>
</tr>
<tr>
<td></td>
<td>SPX Series Industrial</td>
</tr>
<tr>
<td></td>
<td>Guardian</td>
</tr>
<tr>
<td>λ<sub>F</sub></td>
<td>SPX Series 2</td>
</tr>
<tr>
<td></td>
<td>SPX Series 3</td>
</tr>
<tr>
<td></td>
<td>SPX Series 4</td>
</tr>
<tr>
<td></td>
<td>SPX Series 5</td>
</tr>
<tr>
<td></td>
<td>SPX Series Industrial</td>
</tr>
<tr>
<td></td>
<td>Guardian</td>
</tr>
<tr>
<td>λ<sub>M</sub></td>
<td>SPX Series 2</td>
</tr>
<tr>
<td></td>
<td>SPX Series 3</td>
</tr>
<tr>
<td></td>
<td>SPX Series 4</td>
</tr>
<tr>
<td></td>
<td>SPX Series 5</td>
</tr>
<tr>
<td></td>
<td>SPX Series Industrial</td>
</tr>
<tr>
<td></td>
<td>Guardian</td>
</tr>
<tr>
<td>λ<sub>h</sub></td>
<td>SPX Series 2</td>
</tr>
<tr>
<td></td>
<td>SPX Series 3</td>
</tr>
<tr>
<td></td>
<td>SPX Series 4</td>
</tr>
<tr>
<td></td>
<td>SPX Series 5</td>
</tr>
<tr>
<td></td>
<td>SPX Series Industrial</td>
</tr>
<tr>
<td></td>
<td>Guardian</td>
</tr>
<tr>
<td>λ<sub>p</sub></td>
<td>SPX Series 2</td>
</tr>
<tr>
<td></td>
<td>SPX Series 3</td>
</tr>
<tr>
<td></td>
<td>SPX Series 4</td>
</tr>
<tr>
<td></td>
<td>SPX Series 5</td>
</tr>
<tr>
<td></td>
<td>SPX Series Industrial</td>
</tr>
<tr>
<td></td>
<td>Guardian</td>
</tr>
</tbody>
</table>

T_{FIT} = 1.8x10¹¹ 1h

Remark: Failure rates of electronic components as per Siemens SN 26500, calculated based upon an ambient temperature of 25 °C.
APPENDIX 1 - DEFAULT VALUES

<table>
<thead>
<tr>
<th>Variable</th>
<th>Default Value</th>
<th>Access</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog Output Alarm Flag</td>
<td>Low</td>
<td>RW</td>
<td>High, Low, Hold Last</td>
</tr>
<tr>
<td>Burst Command Enable</td>
<td>Off</td>
<td>RW</td>
<td></td>
</tr>
<tr>
<td>Burst Option Variable</td>
<td>PV</td>
<td>RW</td>
<td></td>
</tr>
<tr>
<td>Date of Last Factory Calibration</td>
<td>Date of Calibration</td>
<td>RO</td>
<td></td>
</tr>
<tr>
<td>User Selectable Date</td>
<td>Date of Calibration</td>
<td>RW</td>
<td></td>
</tr>
<tr>
<td>Manufacturer Identification Code</td>
<td>0 x 72</td>
<td>RO</td>
<td></td>
</tr>
<tr>
<td>Dev ID (Device Identifier)</td>
<td>Unique number set by Factory</td>
<td>RO</td>
<td></td>
</tr>
<tr>
<td>Final Assembly Number</td>
<td><BLANK></td>
<td>RW</td>
<td></td>
</tr>
<tr>
<td>Local Push-button Enable</td>
<td>Enable</td>
<td>RW</td>
<td>Enabled, Disabled</td>
</tr>
<tr>
<td>Factory Default LRV</td>
<td>0</td>
<td>RO</td>
<td></td>
</tr>
<tr>
<td>Lower Sensor Limit</td>
<td>-0.04 * full scale of SPX-T</td>
<td>RO</td>
<td></td>
</tr>
<tr>
<td>Message Text</td>
<td>HTTP://WWW.DYNISCO.COM/</td>
<td>RW</td>
<td></td>
</tr>
<tr>
<td>PV Minimum Span Value</td>
<td>Factory Default PV_URV divided by 5</td>
<td>RO</td>
<td></td>
</tr>
<tr>
<td>Number of Request Preambles</td>
<td>5</td>
<td>RW</td>
<td></td>
</tr>
<tr>
<td>PV Damping Constant Value</td>
<td>0 Seconds</td>
<td>RW</td>
<td>0-30</td>
</tr>
<tr>
<td>PV Lower Range Value</td>
<td>0</td>
<td>RW</td>
<td>0-30</td>
</tr>
<tr>
<td>PV Engineering Unit Code</td>
<td>Per Customer Order</td>
<td>RW</td>
<td>0 x 06 – PSI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0 x 07 – Bar</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0 x 0A – kg/cm²</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0 x 39 – % of FS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0 x ED – MPa</td>
</tr>
<tr>
<td>PV Upper Range Value</td>
<td>Full scale (same as on label)</td>
<td>RW</td>
<td></td>
</tr>
<tr>
<td>PV Transfer Function Code</td>
<td>Linear</td>
<td>RO</td>
<td></td>
</tr>
<tr>
<td>Rcal Calibration Percentage</td>
<td>80%</td>
<td>RW</td>
<td>20 - 100%</td>
</tr>
<tr>
<td>Field Device Serial Number</td>
<td>As Set at Factory</td>
<td>RO</td>
<td></td>
</tr>
<tr>
<td>Tag</td>
<td>?</td>
<td>RW</td>
<td></td>
</tr>
<tr>
<td>Transmit Address</td>
<td>0</td>
<td>RW</td>
<td>0 - 15</td>
</tr>
<tr>
<td>Factory Default URV</td>
<td>Per Customer Order</td>
<td>RO</td>
<td></td>
</tr>
<tr>
<td>Upper Sensor Limit</td>
<td>1.5 * full scale of SPX</td>
<td>RO</td>
<td></td>
</tr>
</tbody>
</table>
11 APPENDIX 2 – Menu Tree (Software Revision < 100)

Menu Tree for SPX

1. Process Variable
 1. PV
 2. % Range
 3. PV Analog Output
 4. Electronics Temperature

2. Diagnostics & Services
 1. Test Device
 2. Self Test
 3. Master Reset
 4. Loop Test
 5. Calibration
 6. N-Cal

3. Basic Setup
 1. Tag
 2. PV Unit
 3. Range Values
 4. Device Info
 5. PV Damp

4. Detailed Setup
 1. Signal Condition
 2. Output Condition
 3. Field Device Information

5. Review
 1. Read Peak Values
 2. Status

 1. Enter Values
 2. Apply Values

 1. Zero Trim
 2. Lower Sensor Trim
 3. Upper Sensor Trim

 1. Real Set %

 1. Electronics Temp.
 2. Pressure (PSI)

 1. Enter Values
 2. Apply Values

 1. Pressure
 2. % of Full Scale
 3. Electronics Temperature
 4. Analog Output

 1. Enter Values
 2. Apply Values

 1. Process Variable
 2. Range
 3. PV Unit
 4. PV Range Unit
 5. PV Min Span
 6. PV Damp
 7. SV Elec Temp

1. Process Variables
 1. Analog Output
 2. PV AO Alarm Type

 3. Loop Test
 4. Dig/Analog Trim
 5. Scaled D/A Trim

 1. Analog Output
 2. PV AO Alarm Type

 3. Loop Test
 4. Dig/Analog Trim
 5. Scaled D/A Trim

 1. Full Address
 2. # of Request Preambles
 3. Burst Mode
 4. Burst Option

1. Universal Cmd.
 Rev.

 2. Field Device Rev.
 3. SW Rev.

NOTE: “SPX” will appear in the upper left of the communicator screen when this menu tree is valid.

Menu Tree for software revision < 100
From lab to production, providing a window into the process.

Dynisco

www.dynisco.com

P/N: 974153 | Rev: 072016 | ECO: 46503

-54-
From lab to production, providing a window into the process

8 - PIN PC O-RING WITH PUSH BUTTONS PC1H-12-8P

8 - PIN PC WELDED WITH PUSH BUTTONS PC1H-12-8P

8 - PIN PC WELDED WITH HALLS PC1H-12-8P

NOTE: THESE CONNECTOR OPTIONS ARE AVAILABLE ON MOST OF THE CONFIGURATIONS SHOWN ON THE PREVIOUS SHEETS.
12 DYNISCO CONTACT INFORMATION

Please visit our website for up to date contact information:

www.dynisco.com/contact