

Practical Rheology LCR 7001 Capillary Rheometer

Azadeh Farahanchi Rheological Scientist

38 Forge Parkway, Franklin, MA 02038

Tel: 508.541.9582

Cell: 774.287.2366

Azadeh.Farahanchi@dynisco.com

Proprietary & Confidential

Outline

- 1. Introduction
- 2. Shear Sweep Test (Polymer Flow Behavior)
- 3. Rabinowicz and Bagley Corrections
- 4. Extensional Viscosity Measurements
- 5. Wall Slip Velocity Calculation
- 6. Time Sweep Test (Thermal Stability of Polymers)
- 7. Die Swell Measurements
- 8. MFR Correlation
- 9. Intrinsic Viscosity of PET

10. LCR Dies Information **Dynisco**

Introduction

Why Capillary Rheometer?

- The most common melt rheometer to analyze flow behavior of polymers under processing condition (shear rate, time, temperature).
- Duplication of processing parameters for design, simulation, and trouble shooting purposes in a faster way.
- Predict optimal operating condition based on correlation of rheological data from capillary rheometer to processing parameters.
- Analyze different materials for various applications and design.

APPLICATIONS

- ✓ Polymer viscosity at wide deformation rate range
- Polymer melt flow behavior
- Shear thinning behavior
- Polymer stability over time/temperature
- Elastic properties (die swell, wall slip)

Dynisco[®]LCR 7001

General Specification

Based on **ASTM-D3835** "Standard Test Method for Determination of Properties of Polymeric Materials by Means of a Capillary Rheometer"

LCR7001 SPECIFICATION

- ✓ Temp range: 25-500 °C
- ✓ Shear rate range: 1-100000 1/s
- ✓ Barrel diameter: 9.55 mm
- ✓ Available length: 227 mm
- ✓ Working length: 125 mm
- ✓ Min piston speed: 0.03 mm/min
- ✓ Max piston speed: 650 mm/min
- ✓ Max force measurement from load cell: 10 KN
- ✓ Max pressure measurements: 1400 Bar
- ✓ Accuracy of test-to-test~1.5-2%
- ✓ Accuracy of rheometer-to-rheometer~8%

Extrusion & Capillary Rheometer

LCR Preparation Before Running the Test

LCR Cleaning After the Test

Shear Sweep Test

(Polymer Flow Behavior)

What is Shear?

Calculation of Rheological Data in LCR

Apparent shear rate (based on piston speed)	$ \mathbf{\dot{\gamma}}_{a} = \frac{4Q}{\pi R_{c}^{3}} $ $ \mathbf{\dot{\gamma}}_{a} = S(\frac{\pi D_{b}^{2}}{4}) $	 γ'_a(1/s): apparent shear rate Q (mm³/sec): volumetric flow rate S (mm/min): piston speed D_b (mm): barrel diameter R_c (mm): die radios
Wall shear stress (based on force or driving pressure)	$\star \tau_{w} = \frac{\frac{F}{\pi D_{b}^{2}}}{\frac{4(L}{D})die}$ $\star \tau_{w} = \frac{P}{\frac{4(L}{D})die}$	 τ_w (Pa): wall shear stress F (N): force from "load cell" on piston D_b(mm): barrel diameter L/D: length to diameter ratio of the die P_d (Pa): driving pressure at the die entrance from "pressure transducer"
Apparent shear viscosity	$\bigstar \eta_a = \frac{\tau_w}{\dot{\gamma}_a}$	 η_a (Pa-s): apparent shear viscosity τ_w (Pa): wall shear stress γ_a(1/s): apparent shear rate

Dynisco

Assumptions: 1: Fully developed, isothermal, steady state, and Laminar Flow - 2: No radial or circumferential velocity components - 3: Incompressible fluid - 4: No slip at the wall of the die

Shear Flow in Viscoelastic Polymer Melts

Effect of Various Factors on Polymer Flow Curve

Flow Curve of Polymer Melts

Molecular Weight Distribution (MWD)

- Better processablity (fluidity)
- Less viscous dissipation during their process
- Less energy consumption during their process
- Lower mechanical properties

Molecular Weight Distribution

Analyzing Polymer Degradation from Flow Curve

Proprietar

Dynisco

Mw Dependence of Zero-Shear Viscosity

Quantitative Relationships for the Dependence of Viscosity upon Shear Rate

/nisco

✤ k has temperature dependency and controlled by Mw. J.M. Dealy, K.F. Wissbrun, Melt Rheology and its Role in Plastics Processing: Theory and Applications, Van Nostrand Reinhold, New York (1990)

 $\eta(\dot{\gamma}) = k\dot{\gamma}^{n-1}$ **k** (Pa-s): Consistency **n**: Power-law index

Power-law Model

- "Only" fits the shear-thinning (power-law) portion of the curve
- Shear-thinning exponents dependent on intermolecular forces.
- ✤ *n* ranges from 0.2-0.9 depending upon the type of polymer.
- \bullet *n* equals to 1 for Newtonian materials.
- ✤ *n* represents the processability (shear-thinning intensity).
- Polymers with lower *n* are more sensitive to the shear rate.
- n decrease with broader MWD.

Quantitative Relationships for the Dependence of Viscosity upon Shear Rate

nisco

Modified Cross Model

- η_0 (Pa-s): Zero-shear viscosity
- au^* (Pa): Critical shear stress
- **n**: Power-law index
- Combines the power-law and Newtonian regions.
- Also fits the low shear Newtonian plateau.
- * η_0 is controlled by molecular weight.

 $\eta(\dot{\gamma})$

- ↔ τ^* is stress at the beak in curve and controlled by MWD.
- Broader MWD (by blending or branching) cause earlier τ^* .

Viscosity-Temperature Dependence

- - - T= 285 °C --- T= 230 °C T= 190 °C 10⁴ Apparent Viscosity (Pa-s) Increasing 10² temperature 10¹ 10^{3} 10^{0} 10^{2} 10^{1} Shear Rate (1/s)

Dynisco

Window into the process

• Williams-Landel-Ferry (WLF) model: ($T_g < T < T_g + 100$) $\log(a_T) = \frac{\eta_0(T)}{\eta_0(T_{ref})} = \left[\frac{-C_1(T - T_g)}{C_2 + T - T_g}\right]$ $C_1 = 17.44$ $C_2 = 51.6 K$ * Arrhenius model: $(T > T_g + 100)$ $a_T = \frac{\eta_0(T)}{\eta_0(T_{ref})} = \exp[\frac{E_a}{R} \left(\frac{1}{T} - \frac{1}{T_{ref}}\right)]$ E_a : Activation Energy R: Universal gas constant = $8.314 \times 10^{-3} \ ^{kJ}/_{mol. K}$

A Window into Your Process!

https://www.ptonline.com/columns/how-to-spec-a-flat-die

- Which polymer has higher shear-thinning behavior (easier process-ability)?
- With increasing screw speed which polymer will have the highest flow rate?
- Which polymer has the highest molecular weight?
- Which polymer had the Broader MWD?
- Which polymer might have linear might have long chainbranching and which one might have linear structure?

A Window into Your Process!

- Which polymer might face higher thermal degradation with increasing temperature?
- Which polymer has wider processing temperature?

Shear-Sweep Test Setup in LabKars

🛓 Setup	~	(4)	_					
н ч н н 🔺 📿	e (3)Data F	Point Setup # 312	(5) (6)) (7)				
Setup # Program Name	Start Pos.	Temperature Melt Ti	me Sensor1 ID	Die	^	👖 Close		
312 Shear Rate Sweet	p 100	190	300 LC-502N	CX394-30			1.	Add/delete Data Point Setup
313 PE Sweep	100	190	300 LC-502N	C×394-30		Add New Data Point Setup		
314 PE Stability	100	190	300 LC-502N	C×394-30		Delete Last Data Point Setup	2.	Program Name
315 PE Stability II	100	190	300 LC-502N	CX394-30				Chart Desition (mana), 20, 100 mana
316 PE Short	100	190	300 LC-502N	CX394-30			5.	Start Position (mm): 89-100 mm
317 PE Long 219 DE Slin Small	100	190	300 LC-502N	CX394-30		Export Test Definition	Λ	Temperature (°C): harrol temperature set point
319 PE Slip Small	100	190	300 LC-502N	CX394-30		Import Test Definition	4.	iemperature (C). Darrer temperature set point
320 PP Sweep	100	190	300 LC-502N	CX394-30			5	Melt time (sec): 180-360 sec
321 PP Stability	100	190	300 LC-502N	CX394-30	-	Generate Speed Control		
Control Mode						Concerts Obsers Data	6.	Sensor1 ID: LC-103N
Rate O Stress	⊠ ⊲ ► ₩ +	- 410 / ~				Generate Shear Rate	1 7	Die: choose entrance angle. D and I /D from list
Test Type	Point #	Speed Control	Shear Rate	Delay Sec	•		1 1.	Die. choose entrance angle, D and L/D noninist
Steady State		1 180.0	0 2189.04	0		Sweep Generation	8.	Minimum/Maximum Speed (mm/min):
C Position (Acquire At - mm)		2 124.2	2 1510.68 2 1042.47	U 0		Point Speed Control		Min at 0.02 and May at CEO man /min
		4 59.1	6 719.47	0		Start: 1		IVIIN at 0.03 and IVIAX at 650 mm/min
C Manual		5 40.8	2 496.43	0		End:	0	Data Acquisition mode:
C Time Delay (Acquire At-sec)		6 28.1	7 342.59	0		Value in Speed Control	J J .	Data Acquisition mode.
		7 19.4	4 236.42	0		Generate Method		Steady state Position Time Delay Manual
C Elapse Time (Acquire At - sec)		8 13.4	2 163.21	0		 Logarithmic 		Steady State, Tostion, Thie Delay, Manual
		9 9.2	6 112.61	0		C Linear	10). Speed Control range (mm/min)
Minimum Speed 0.03	1	0 6.3	9 //./1	U	v			
Maximum Speed 650						Auto Generate Points	11	L. Shear Rate range (1/s)
							12	Conducending test setup to rhoometer
							14	L. Jenu. sending lest setup to meometer
						≻Send (12)	_	

Dynisco

LabKars Software (Control Screen)

vnisco

Real-time data graph during the test

- 1. RCAL: balance transducers!
- 2. Run: run the test!
- 3. Acquire: collect data!
- 4. Stop: stop the test!
- 5. Purge: purge all the material in barrel!
- 6. Up: move plunger upward!
- 7. Down: move plunger downward!
- 8. Park: go to park position (25mm)!
- 9. Sensor #1 (N): force on load cell
- **10.** Sensor #2 (N): force on pressure transducer
- 11. Active Ram Rate (mm/min): piston speed
- 12. Temperature (°C): actual barrel temperature
- 13. Laser (mm): die swell detection
- 14. Plunger position (mm)
- 15. Run time (sec)
- 16. Collected point: at each shear rate

Data Analysis

Plot of log apparent viscosity versus apparent shear rate

Dynisco

Data Analysis

Dynisco

Proprietary & Confidential

Data Analysis

Raw Data in LabKars

💹 Dynisco Polymer Test - Analyze _ 7× File Edit Plot Database Path: 붬 Print <mark>₿</mark>efresh + Copy Close d:\PROGRA~1\LABKAR~2\Database Single Run / Modify Interplate Plot Table Database / ilters Include header info when copying Charge Select Report Type Sample ID: 2.5 N Save Screen Settings Sensor 1 Lot #: 9-10-07 MC Operator: C Sensor 2 Material: HDPE Sensor 1: LC-103N 300 s Melt Time: O Sensor 1 & 2 Machine: 7001 Sensor 2: RCal: 102.1 % Printer Format Select "Single Date: 09/10/2007 10:37 am 210 C Select the type of Melt Pause: 0 s Temperature: Portrait Die: CZ787-15 Start Position: 100 mm Program Name: 127:F2LR C Landscape Run/Modify" to sensor Comment: CZ787-15, CZ787-15 Sensor1 (N) Pos (mm) Ram (mm/min) Time (sec) Stress (Pa) Rate (1/s) Visc. (Pa-s) Delay Time Real Temp (C) see the raw data 46139 26818.6 210 98 105 1.13 631.89 1.72 Sensor 1: Load cell 199 110 0.98 931.13 46281 1.49 31018.3 210 3 206 115 1.20 1229.09 47838 1.83 26183.8 210 Sensor2: Pressure 61.27 1260.60 2319.8 210 Δ 930 140 216402 93.29 958 165 2005.1 209.8 5 72.97 1282.65 222771 111.10 962 190 80.80 1302.16 223761 123.01 1819.0 209.9 transducer Max, min, average, mean, and standard Raw data deviation information of all parameters Force Position Time Stress Viscosity Ram rate Rate Average 575.4 137.5 36.4 1106.3 133865 55.4 15027.4 Max 961.8 190.0 80.8 1302.2 223761 123.0 31018.3 Min 105.0 198.3 1.0 631.9 46139 1.5 1819.0 Count 6 6 6 6 6 Mean 137.508 1106.253 15027.430 575.377 36.392 133865.300 55.406 St. Dev 410.315 34,177 39,153 14315.950 269.850 95462.460 59.610 🏄 start 😂 🚱 🧕 🔣 3 Microsoft Ex... 👻 📴 LCR_Unit_03_L 🔇 🔂 🔊 😕 📃 10:09 PM LCR_Unit_04_L 🔯 OctoberClass 🚊 Alpha Technolo. 📈 Alpha Technolo. **Dynisco**

Export Raw Data in Excel

Rabinowicz and Bagley Corrections

Corrections

- All calculations we discussed are "Apparent" values since they assume Newtonian behavior and that the entire pressure drop occurs inside through die. (Assuming no die entrance/exit effect)
- Rabinowicz correction needs to be applied in order to rectify the data for non-Newtonian character of polymer melt. (Calculation of corrected shear rate)
- Bagley correction needs to be applied to consider the extra pressure drop that may happen at the entrance/exit of the die.(Calculation of corrected shear stress)

Why Rabinowicz Corrections?

Rabinowicz Corrections

How to Apply Rabinowicz Corrections in LabKars?

Dynisco

Proprietary & Confidential

Why Bagley Corrections?

Dynisco

- > $A = \Delta p_{Barrel}$: Very minor pressure drop in barrel
- > **B** = $\Delta p_{Entrance}$: Excess pressure drop in die entrance
- \succ **C** = $\Delta p_{Capillary}$: Fully developed flow region in capillary die
- Large pressure drop associated with the flow entrance region due to viscoelasticity of polymers.
- After entrance region, The pressure gradient approaches a constant value (fully developed flow region)

In reality:

$$\Delta \boldsymbol{P_{total}} = \Delta \boldsymbol{P_{Entrance}} + \Delta \boldsymbol{P_{capillary}}$$

 Bagley correction needs to be applied to calculate the entrance pressure drop
How to Calculate the Entrance Pressure?

How to Apply Bagley Corrections in LabKars?

How to Calculate True Viscosity?

$$\eta_{True} = \frac{\tau_C}{\dot{\gamma}_C}$$

where $> \eta_{True}$ (Pa-s): Viscosity with Bagley and Rabinowicz Corrections $> \tau_C$ (Pa): Bagley corrected shear stress $> \dot{\gamma}_C$ (1/s): Rabinowicz corrected shear rate

Viscoelasticity

Mechanical Models of Viscoelastic Behavior

PURELY VISCOUS RESPONSE

Mechanical Models of Viscoelastic Behavior

Extensional Viscosity Measurements

When Extensional Viscosity is important?

44

What is Extensional (Elongational) Viscosity?

 \triangleright

Cogswell's Equations

Extensional Stress	$\bigstar \sigma_{Ext} = \frac{3}{8}(n+1)P_{Ent}$	 σ_{Ext} (Pa): Extensional stress n: Power law index P_{Ent} (Pa): Entrance pressure
Extensional Rate	$\bigstar \dot{\boldsymbol{\epsilon}} = \frac{4 \dot{\gamma}_a^2 \eta_a}{3(n+1)P_{Ent}}$	 ϵ (1/s): Extensional rate $\dot{\gamma}_a$ (1/s): Apparent shear rate P_{Ent} (Pa): Entrance pressure
Extensional Viscosity	$\bigstar \eta_{Ext} = \frac{9(n+1)^2 P_{Ent}^2}{32\eta_a \gamma_a^2}$	> η_{Ext} (<i>Pa-s</i>): Extensional viscosity

J.M. Dealy, K.F. Wissbrun, Melt Rheology and its Role in Plastics Processing: Theory and Applications, Van Nostrand Reinhold, New York (1990).

How to Perform Extensional Viscosity Measurements in LabKars?

Proprietary & Confidentia

Example!

Wall Slip Velocity & Melt Farcture

Proprietary & Confidential

Wall Slip in Capillary Flow

- Wall slip velocity increases dramatically above critical shear stress (~0.1 MPa).
- Slippage reduces apparent viscosity. Also, the surface of the extrudate begins to be rough (melt fracture).
- Wall slip happens due to elastic properties of polymer materials.
- Critical shear stress is lower for polymers with higher molecular weight
- Trouble shooting by using larger die diameter, longer die, tapering the die, higher temperature, or lower shear rate.

Effect of Wall Slip on Capillary Rheometer Results

S. G. Hatzikiriakos, Wall Slip of Molten Polymers, Progress in Polymer Science, 37 (2012), 624-643

Wall slip causes formation of plug flow and a discontinuity in flow curve.

How to Calculate Wall Slip Velocity?

- V_w (mm/sec): Wall slip velocity
- $\succ \dot{\gamma}_a(1/s)$: apparent shear rate at a given value of shear stress

 $\dot{\gamma}_a = 4V_w \left(\frac{1}{R_c}\right) + X$

- R_C(mm): Capillary die radios
 - X: Dimensionless parameter (a function of the shear stress)

Steps:

- 1. Produce a series of flow curves using a set of dies of varying radius (R_c) .
- 2. At a given value of shear stress, make a plot of apparent shear rate ($\dot{\gamma}_a$) versus inverse radius ($\frac{1}{R_c}$).
- 3. Slip velocity at a given shear stress will be one quarter of the slope of $\dot{\gamma}_a$ -vs- $\frac{1}{R_c}$ plot.
- 4. Repeat the test at other shear stresses and calculate the slip velocity at each specific shear stress.
- 5. Make the plot of slip velocity versus shear stresse.

Reference:

Dynisco J.M. Lupton, H.W. Regester, Melt Flow of Polyethylene at High Rates, Polym. Eng. Sci. 5, 235-245 (1965)

How to Notice Wall Slippage from Flow Curve in LCR?

Melt Fracture Trouble Shooting in Extrusion Process

This phenomena happens due to elasticity of polymer melts. Any procedure that reduces the melt elasticity will help to troubleshoot. e.g.:

- ✓ Increasing temperature
- Reducing screw speed (shear rate)
- ✓ Increasing the die length or die diameter
- ✓ Tapering the die

Dynisco

Time Sweep Test

(Thermal Stability of Polymers)

Thermal Stability of Polymer Melt

- The stability test can determine the resistance of a material to a change in viscosity at the test temperature.
- * The stability of polymer melts varies depending on temperature, time at temperature, formulation, and contaminants.
- This test can be used to show the presence of moisture or reactive chemicals in a polymer.
- This test can be used to measure the degradation rate or reactivity of a sample

Dynisco

How to Set up Thermal Stability Test (Time Sweep) in LabKars?

	🛓 Setup						
	H + H - V X	୯ Data F	Point Setup # 1	1			
	Setup # Program Name	e Start Pos.	Temperature	Melt Time Senso	r1 ID Die 📝		
	2 7523 Control Gre	rey PP 100	230	300 LC-103	N CY300-33		
	3 Polycarbonate	100	300	300 LC-103	N CY300-33		
	4 Position Based	ITest 90	190	300 LC-103	N C×300-33	-	$\Lambda I - C \times \Lambda t$
	5 Bagley Test	100	230	300 PT-142	2BAR-A CX394-40		$\Delta L = 5 \times \Delta t$
	6 Thermalstability	y Test 100	285	120 LC-103	N CZ600-20	i i	
	7 Nylon	90	240	240 LC-103	N CZ394-20		13 6.5 Z
	8 HDPE	90	90	360 LC-103	N CZ787-15		mm mm/sec sec
	9 PEEK	100	400	300 LC-103	N CY400-15		
	10 PET I.V.	100	285	240 LC-103	N C×300-33	- /V	Vhere
Select	11 Nylon Stability	89	240	180 LC-502	N CZ394-20		A I . Dictor travel dictorce
Juliu						- / /	ΔL . Pistoli travel distance
'Position"	Control Mode Rate C Stress	H A F H +	* *	6			between points
Test Type	Test Type	Point # Speed C	ontrol Shear Rate	Delay Sec 1	ime Min Acquire At-mm	(-	
	🔿 Steady State	▶ 1	6.50	79.05	102.0		
		2	6.50	79.05	115.0		S: Piston speed
	Position (Acquire At - mm)	3	6.50	79.05	128.0		Max nlunar traval (120 mm)
	C Manual	4	6.50	79.05	141.0		$= \frac{Max planer (130 mm)}{2}$
	i manadi	5	6.50	79.05	154.0		Test time (e.g.20 min)
	🔿 Time Delay (Acquire At - sec)	6	6.50	79.05	167.0		(0.8.20)
		7	6.50	79.05	180.0		
	C Elapse Time (Acquire At-sec)	8	6.50	79.05	193.0		> Δt : Piston time travel
		9	6.50	79.05	206.0	ŕ	
	Minimum Speed 0.03	10	6.50	79.05	219.0	,	between points
	Maximum Speed <mark>650</mark>	1	,				_ <u>Test time</u> (e.g.20 min)
							# of points (e.g.10)

"Position"

Appling the same speed and shear rate multiple times

How to Set up Thermal Stability Test (Time Sweep) in LabKars?

•	•	►	M		~	×	ھ		Data F	Point Set	tup # 1	1				
		S	etup 7	# Proc	jram N	lame		Start Pos.		Temperature	Э	Melt Tim	e	Sensor1 ID	Die	
				2 7523	Contr	ol Gre	y PP		100		230		300	LC-103N	CY300-33	
3 Polycarbonate			100			300		300	LC-103N	CY300-33						
				4 Posi	tion B	ased 7	Test		90		190		300	LC-103N	CX300-33	
			!	5 Bagl	ey Te	st			100		230		300	PT-142BAR-A	CX394-40	
				6 Ther	malst	ability '	Test		100		285		120	LC-103N	CZ600-20	
				7 Nylo	n				90		240		240	LC-103N	CZ394-20	
			1	8 HDF	Έ				90		90		360	LC-103N	CZ787-15	
			!	9 PEE	К				100		400		300	LC-103N	CY400-15	
			1	0 PET	1.V.				100		285		240	LC-103N	CX300-33	
) Contr	ol Mo	de –	1	1 Nylo	n Stat	oility			89	1 1 1	240		180	LC-502N	CZ394-20	
Contr Ri Test	ol Mo ate Type:	de	1	1 Nylo	n Stat	oility	I ⊲		89		240	<u>୧</u>	180 Delau Sec	LC-502N	CZ394-20	
Contro Ri Test ⁻	ol Mo ate Type	de	1	1 Nylo	n Stat	pility	I ⊲ Poir	■ P	89	ontrol	240 🧭 🕺 Shear Rate	୍ ୯ 79.05	180 Delay Sec	LC-502N Time Min	CZ394-20 Acquire At-mm	102.0
Contri Ri Test ⁻¹ St	ol Mo ate Type teady	de State	1 C	1 Nylo	n Stak s	pility	I⊲ Poir	■ ▷	89 Speed C 1 2	ontrol 6.50	240 🧹 🕺 Shear Rate	79.05 79.05	180 Delay Sec	LC-502N Time Min	CZ394-20 Acquire At-mm	102.0
Contri Ri Test ⁻¹ St Pi	ol Mo ate Type teady ositiol	de State	1 C	1 Nylo Stres	n Stak s		I⊲ Poir	▲ ►	89 Speed C 1 2 3	- A ontrol 6.50 6.50 6.50	240	79.05 79.05 79.05	180 Delay Sec	LC-502N Time Min 66 66	CZ394-20 Acquire At-mm	102.0 115.0 128.0
Contro Ri Test ⁻¹ St Po	ol Mo ate Type teady osition	de State n (Acc	1 C	1 Nylo Stres At-mn	n Stak s))	pility	I⊲ Poir	■ P	89 Speed C 1 2 3 4		240 	79.05 79.05 79.05 79.05 79.05	180 Delay Sec	LC-502N Time Min 66 66 66	CZ394-20	102.0 115.0 128.0 141.0
Contri Ri Test ⁻ St Pi M	ol Mo ate Type teady osition anual	de State n (Acc	1 C	1 Nylo Stres At-mn	n Stak s ງ)	pility	Poir	■ ►	89 Speed C 1 2 3 4 5		240 Shear Rate	79.05 79.05 79.05 79.05 79.05 79.05	180 Delay Sec	LC-502N Time Min 66 66 66 66	CZ394-20	102.0 115.0 128.0 141.0 154.0
Contro Ri Test ⁻¹ St Po M	ol Mo ate Type teady osition anual	de State n (Acc	1 C Juire	1 Nylo Stres At-mn	n Stat	pility	Poir	nt #	89 Speed C 1 2 3 4 5 6	■ ▲ ontrol 6.50 6.50 6.50 6.50 6.50 6.50 6.50 6.50 6.50 6.50 6.50 6.50 6.50	240	79.05 79.05 79.05 79.05 79.05 79.05 79.05	180 Delay Sec	LC-502N Time Min 66 66 66 66 66 66	CZ394-20 Acquire At-mm	102.0 115.0 128.0 141.0 154.0 167.0
Contro Ra Test T St Pa M Ti	ol Mo ate Type teady osition anual ime D	de State n (Acc	1 C Juire J	1 Nylo Stres At-mn	n Stab s))	pility		▲ ►	89 Speed C 1 2 3 4 5 6 7		240	79.05 79.05 79.05 79.05 79.05 79.05 79.05 79.05	180 Delay Sec	LC-502N Time Min 66 66 66 66 66 66 66	CZ394-20	102.0 115.0 128.0 141.0 154.0 167.0 180.0
Contro Ra Test St Pa M Ti C H	ol Mo ate Type teady osition anual ime D lapse	de State n (Acc lelay i Time	1 C uuire / Acqu (Acc	1 Nylo Stres At - mn uire At -	n Stat s)) ·sec) t-sec)) ility		■ ►	89 Speed C 1 2 3 4 5 6 7 8	 6.50 	240	79.05 79.05 79.05 79.05 79.05 79.05 79.05 79.05 79.05	180 Delay Sec	LC-502N Time Min 66 66 66 66 66 66 66 66	CZ394-20	102.0 115.0 128.0 141.0 154.0 167.0 180.0 193.0
Contr R Test ⁻ St M M C Ti C El	ol Mo ate Type teady osition anual ime D lapse	de State n (Acc elay I	1 C Acqu (Acc	1 Nylo Stres At - mn uire At - quire At	n Stat		Poir	nt #	89 Speed C 1 2 3 4 5 6 7 8 9	− ▲ ontrol 6.50 6.50 6.50 6.50 6.50 6.50 6.50 6.50 6.50 6.50 6.50 6.50 6.50 6.50 6.50 6.50 6.50 6.50 6.50	240	79.05 79.05 79.05 79.05 79.05 79.05 79.05 79.05 79.05 79.05	180 Delay Sec	LC-502N Time Min 66 66 66 66 66 66 66 66 66 66 66	CZ394-20	102.0 115.0 128.0 141.0 154.0 167.0 180.0 193.0 206.0

Add delay time to increase the stability test time while keeping shear rate constant

Maximum Speed 650

Thermal Stability Test Results (Time Sweep) in LabKars

Die Swell

Die swell Ratio

Percent die swell =
$$\frac{D_{Extrudarte} - D_{die}}{D_{die}} \times 100$$

- Expansion (re-coiling) of extrudate after exiting die.
- Qualitative measure of melt elasticity.
- Relaxed die swell is used to predict part dimension
- Running die swell is used to predict productivity of extrusion process.
- Analysis of extrudate smoothness.
- Trouble shooting by using larger die diameter, longer die, tapering the die, lower shear rate, or higher temperature.

Die Swell Measurement in LCR

- Detection: CCD element
- ✤ Light source: 800 nm laser
- Resolution: 2.75 μm
- Measuring range: 0.13-23 mm
- Response time: 1.4 ms
- ✤ Accuracy: ±0.003 mm

Die Swell Measurement in LCR

Die Swell Trouble Shooting in Extrusion Process

This phenomena happens due to elasticity of polymer melts. Any procedure that reduces the melt elasticity will help to troubleshoot. e.g.:

- ✓ Increasing temperature
- Reducing screw speed (shear rate)
- Increasing the die length or die diameter
- ✓ Tapering the die

Dynisco

MFR Correlation

Proprietary & Confidential

How to Calculate MFR from Capillary Rheometer?

1.	Calculate the shear stress in the melt flow rate tester
	(using a standard die)

Weight in MFR test (kg)	Shear stress (Pa)
2.16	19350
5.00	44792
10.00	89584
21.60	193502

2. Determine the shear rate achieved at this shear stress from material flow curve

How to Calculate MFR from Capillary Rheometer?

3. Calculation of melt volume rate (MVR) as follow:

$$MVR = 600\dot{\gamma}\frac{\pi R^3}{4}$$

where

> MVR ($cm^3/10$ min): Melt volume rate

- $\succ \dot{\gamma}(\frac{1}{c})$: Shear rate determined at "step 2"
- \succ R (cm): Standard melt flow rate tester die radius

4. MFR calculation knowing polymer melt density as follow: $MFR = MVR imes
ho_m$

where

$$\triangleright \rho_m(\frac{g}{cm^3})$$
: Polymer melt density

How to Measure MFR in LabKars?

How to Measure Melt Density in LCR?

	🛓 Setup					
	H F F △ V X C	Data Point S	etup # 324			
	Setup # Program Name		ire Melt Time Sens	or1 ID Die		
	315 PE Stability II	100	190 300 LC-5	02N CX394-30		
	316 PE Short	100	190 300 LC-5	02N C×394-30		
	317 PE Long	100	190 300 LC-5	02N CX394-30		
	318 PE Slip Small	100	190 300 LC-5	02N CX394-30		
	319 PE Slip Large	100	190 300 LC-5	02N CX394-30		
	320 PP Sweep	100	190 300 LC-5	02N CX394-30		
	321 PP Stability	100	190 300 LC-5	02N CX394-30		
	322 PE Stability	100	190 300 LC-1	J3N CZ394-20		Asusas the usettions to
Colost	323 PE Shear Rate Long	100	190 300 LC-1	J3N CZ394-20		lanage the positions to
Select	324 Melt Density	120	190 300 LC-1	J3N CZ394-20	× .	and 11 man of whether
"Desition"	Control Mode				🚽 🖉 n	ave 14 mm of piston
Position	● Rate	< ▷ ⊠ + - ▲	ା 🖉 🕺 🖕			aval distance haturaan
Tost Tuno	Test Type	pint # Speed Control	Shear Rate Delay Sec	Time Min Acquire At-mm	l l	ravel distance between
lest type	C Steady State	1 32.8	9 400.00	134.0		ainta
	Position (Acquire At-mm)	2 32.8	9 400.00 30	148.0		omus
		3 32.8	9 400.00 30	162.0		
	C Manual	4 32.8	3 400.00 30	176.0		
	C Time Delay (Acquire At - sec)	5 32.8	9 400.00 30	190.0		
	C Elapse Time (Acquire At-sec)					
	Relaxed Die Swell per zone					
		Five mea	surements of m	elt density		Vhenever the plunger is
	Minimum Speed 0.03					
	Maximum Speed <mark>650</mark>				ir	n its delay time, cut the
		_				and the second
· · · · · · · · · · · · · · · · · · ·	Apply Max Packing Force 🔽	Relaxed Die Swell Delay	sec. Average Readings	points, over last	sec. e 2	xtrudate and weigh it
	Melt Pause 30 sec.	Backup Distance	mm			
	Barrel Diameter 0.376 inch	масво	Ectima	e TestTime 300	Sec	

Dynisco

Intrinsic Viscosity of PET

What is Intrinsic/Solution Viscosity (IV)?

Creating a dilute solution of the polymer and comparing the flow rate of the solution to the flow rate of the pure solvent

* <u>Advantages</u>

- Performing at room temperature
- > No need to melt the polymer
- > No need to dry hygroscopic polymers (e.g. PET, PA)
- Common flowability specification (rather than MFR) among the manufactures of hygroscopic and filled polymers

Disadvantages

- Delicate apparatus
- Using of noxious chemicals as solvent
- Not environmental friendly

Relationship between Melt Viscosity and Intrinsic Viscosity

$$ln[\eta_{Intrinsic}] = \frac{a}{3.4} ln[\eta_0] + K''$$

Dynisco

Proprietary & Confidential
PET Melt Viscosity Versus Intrinsic Viscosity

$$ln[\eta_{Intrinsic}] = \frac{a}{3.4} ln[\eta_0] + K''$$

Slope: $\frac{a}{3.4} \longrightarrow$ For PET: a=0.75
Intercept: K''

Dynisco

How to Determine IV of PET in LCR Capillary Rheometer?

👿 Dynisco	Polymer Test - Analy	'ze					_ 2	X									
File Edit P	lot																
🖨 Prin	🖶 Plot	∂ <u>R</u> efresh [+[<u>C</u> opy	y 4 4 > 1	- <u>Î</u> <u>C</u> lose	Database Path: d:\PROGRA~1\L	ABKAR~2\Database											
Database / Filters Single Run / Modify Interpolate Piol Table																	
Selected Charges								Plot Display									
	Clear All Global Preferences additional days Res					es 🗐 🗐			1/2 Modified		IV=0.817						
							<u>* 🔤 🖵 🔽 </u>			11-0.011							
	Add All	Add All Date Detabase				-				Th							
	Last 3	Switch Database	Progra	Program:I ^{U-All-U}						PP inermai i							
			Samp	ole: 0-All-0		Die2 0-All-0	Ω	10 3				<i></i>				10 ³	
	Remove Item	Save Grid Settings	Opera	tor: 0-All-0	[Temperature 0-All-0	Ľ	10							<u> </u>		
	Count: 0				1		σ								Charge		
		Found: 1169 Runs	Global Preferences													$\overline{\mathbf{\nabla}}$	
Program	Charge	DateTime Sample	SOC NNL I.V. Misc Bag	lev		Temperature Comment									-185		
FMC	1248	08/31/2007 02:31HDPE	Referen Point #1	-Reference Point #2-	-1	210 Test Config 2 210 Test Config 2									-X- 185	\Box	
EMC	1249	09/04/2007 01:5.HDPE		IV	-2	210 Test Config 2 210 Test Config 2										<u>й</u>	
FMC	1250	09/04/2007 04:2 HDPE	1.026	0.650 dila	ОК -2	210 Test Config 2	- .										
FMC	1252	09/05/2007 08:3 HDPE	indea awg	und und	X Cancel -2	210 Test Config 2	- <i>0</i>										
FMC	1253	09/05/2007 09:4 HDPE	Viscosity	Viscosity	-2	210 Test Config 2	O O										
FMC	1254	09/05/2007 10:3 HDPE	615.0 Pa-s	176.0 Pa-s	<u>? H</u> elp -2	210 Test Config 2	0										
FMC	1255 09/05/2007 11:5 HDPE Use Theorectical Slope Slope: 0.215 -2 210 Test Config 2				210 Test Config 2	_ v											
FMC	1256	09/05/2007 01:4/HDPE	Show in Button Offset: 2.36			-2 210 Test Config 2	- :			V V						ŭ l	
EMC	1257	09/05/2007 02:51N 2:5			-2	210 Test Config 2 210 Test Config 2				A B	- <u>P</u> <u>X</u> -	¥				_	
FMC	1259	09/05/2007 05:2 LDPE	MC HDPE Low	Stress First with intermedia	te CX394-2 CX394-2	210 Test Config 2											
FMC	1260	09/06/2007 09:1:LDPE	MC HDPE Low	Stress First with intermedia	te CX394-2 CX394-2	210 Test Config 2	ש										
FMC	1261	09/06/2007 01:1 LDPE	MC HDPE Low	Stress First with intermedia	te CX394-2 CX394-2	210 Test Config 2	1 Å										
FMC	1262	09/06/2007 01:5 2.5 N	MC HDPE Low	Stress First with intermedia	ite CX394-2 CX394-2	210 CX394-20, CX394-20										i X	
FMC	1263	09/06/2007 03:512.5 N	MC HDPE Low	Stress First with intermedia	te CX394-2 CX394-2	210 CX394-20, CX394-20										Š Š	
F2MC	1204	09/07/2007 09:1 2.5 N	MC HDPE 787	Die	CZ787-11CZ787-1	210 CZ787-15, CZ787-15	<u> () </u>										
F2LR	1265	09/07/2007 04:1:2.7 N	MC HDPE 787	Die	CZ787-1:CZ787-1	210 0					_			-			_
F2LR	1267	09/10/2007 08:5 2.7 N	MC HDPE 9-10)-07	CZ787-1 CZ787-1	210 C C C	$N/ \cap ($	dific	nd Cr	nce t	\cap $G \Delta^{i}$	+ 1\/	Rutt∩	n fo	r DF	F at 285 (\square
F2LR	1268	09/10/2007 09:3 2.7 N	MC HDPE 9-10	D-07	CZ787-1 CZ787-1	210 C USC				U33 I		ιινι	Duito				
F2LR	1269	09/10/2007 10:0-2.5 N	MC HDPE 9-10	0-07	CZ787-1:CZ787-1	210 C											
► F2LR	1270	09/10/2007 10:3 2.5 N	MC HDPE 9-10)-07	CZ787-1 CZ787-1	210 CZ787-15, CZ787-15	<u></u>										
<							Ö	104							R	10 ² ဟံ	
AL star		🗙 8 Microsoft Ex 🚽 📑 Lic		it 04 I	Abba Techno	lo 🔤 Alpha Technolo 🖉 🛼		· · · .	0 1		102		103	3		104	
Juli									0'		104		105	,		107	
										•		~ 1					
								Apparent Shear Rate (1/s)									
							- otort	100					Octobercless	A Alpha Tacha	Int John Techn		
		Dvni	600				🤟 start		Class Tiles.x				- octobel elses		📩 Apria rechn		

LCR Dies Information

LCR Die Part Number Code

Formula for die part number:

ADDD-LL

where

A: entry angle
(W=60°, Y=90°, X=120°, Z=180°)

- DDD: diameter in inches×10000
- LL: length to diameter ratio

Dynisco

Die Diameter

- Smaller diameter produces higher shear rates.
- Larger diameter causes less elastic deformation applied at the entrance of the die.
- larger diameter cause less entrance pressure drop, less die swell, less extensional deformation, and less slippage.
- For calculation of wall slip velocity at least 2 dies with different diameters (same L/D) are required.

Die Length

- The portion of fully developed flow in compare with entrance region increases with increasing the die length
- The percent error produced by entrance region is less with longer die.
- Short die for measuring elastic deformation (e.g. die swell, slippage) and long die for measuring shear viscosity.
- Noisy reading from short die at very low shear rates
- For calculation of entrance pressure (Bagley correction) and extensional viscosity, at least 2 dies with different L/D ratio (same diameter) are required.

Die Entrance Angle

- Entrance angle has effect on flow patterns at the entrance to the capillary die.
- Lower angle causes smoother flow, less vortex flow, and less energy consumption at the die entrance.
- Lower angle reduces the elastic deformations (e.g. less entrance pressure drop, extensional deformation, die swell, melt fracture and wall slippage).
- Lower angle favors shear flow.

Dynisco

Flow pattern at the entrance to a die with a flat entrance (180°)

http://www.4spepro.org/view

"Everything Flows"-Heraclitus

BEAUTIFULWORLD.COM